- Sign In
- Sign Up
A Tribute to Quake
The sinusoidal texture displacement underwater effect used on Quake
Created by marcogomez on Mon, 30 Aug 2021 17:07:28 GMT.
// ╔═════════════╦════════════════╗ // ║ Marco Gomez ║ https://mgz.me ║ // ╚═════════════╩════════════════╝ precision highp float; uniform sampler2D prgm3Texture; uniform vec2 resolution; void main(void) { vec2 uv = gl_FragCoord.xy / resolution.xy; vec4 prgm3 = texture2D(prgm3Texture, uv); gl_FragColor = prgm3; }
// ╔═════════════╦════════════════╗ // ║ Marco Gomez ║ https://mgz.me ║ // ╚═════════════╩════════════════╝ precision highp float; uniform sampler2D noiseTexture; uniform sampler2D eTexture1; // https://i.imgur.com/ShYcEmr.jpg uniform sampler2D prgm3Texture; uniform vec2 resolution; uniform float time; const float PI = acos(-1.0); const float TAU = PI * 2.0; const float bgWaveSpeed = 2.0; const float xDistMag = 0.05; const float yDistMag = 0.05; const float xSineCycles = TAU; const float ySineCycles = TAU; float visibility(float roughness, float ndotv, float ndotl) { float m2 = roughness * roughness; float visV = ndotl * sqrt(ndotv * (ndotv - ndotv * m2) + m2); float visL = ndotv * sqrt(ndotl * (ndotl - ndotl * m2) + m2); return 0.5 / max(visV + visL, 0.00001); } float distribution(float roughness, float ndoth) { float m2 = roughness * roughness; float d = (ndoth * m2 - ndoth) * ndoth + 1.0; return m2 / (d * d * PI); } vec3 fresnel(vec3 specularColor, float vdoth) { vec3 fresnel = ( clamp(50.0 * specularColor.y, 0.0, 1.0) * specularColor + (1.0 - specularColor) * pow((1.0 - vdoth), 5.0) ); return fresnel; } vec3 lightSpecular(vec3 normal, vec3 viewDir, vec3 lightDir, vec3 lightColor, float roughness, vec3 specularColor) { vec3 halfVec = normalize(viewDir + lightDir); float vdoth = clamp(dot(viewDir, halfVec), 0.0, 1.0); float ndoth = clamp(dot(normal, halfVec), 0.0, 1.0); float ndotv = clamp(dot(normal, viewDir), 0.0, 1.0); float ndotl = clamp(dot(normal, lightDir), 0.0, 1.0); vec3 f = fresnel(specularColor, vdoth); float d = distribution(roughness, ndoth); float v = visibility(roughness, ndotv, ndotl); vec3 specular; specular = lightColor * f * (d * v * PI * ndotl); return specular; } float cylinder(vec3 p, float r, float height) { float d = length(p.xz) - r; d = max(d, abs(p.y) - height); return d; } float sphere(vec3 p, float s) { return length(p) - s; } float box(vec3 p, vec3 b) { vec3 d = abs(p) - b; return ( min(max(d.x, max(d.y, d.z)), 0.0) + length(max(d, 0.0)) ); } float substract(float a, float b) { return max(+a, -b); } float unionMin(float a, float b) { return min(a, b); } float unionRound(float a, float b, float k) { float h = clamp(0.5 + 0.5 * (b - a) / k, 0.0, 1.0); return mix(b, a, h) - k * h * (1.0 - h); } float triPrism(vec3 p, vec3 h) { vec3 q = abs(p); return max(q.y - h.y, max(q.z * 0.866025 + p.x * h.z, -p.x) - h.x * 0.5); } float scene(vec3 p, mat3 localToWorld) { p = p * localToWorld; float a = cylinder(p, 1.0, 0.1); float b = cylinder(p + vec3(0.12, 0.0, 0.0), 0.9, 0.2); float ring = substract(a, b); float c = box(p + vec3(-0.8, 0.0, 0.0), vec3(0.40, 0.1, 0.10)); float d = box(p + vec3(-0.4, 0.0, 0.0), vec3(0.02, 0.1, 0.25)); float e = triPrism(p + vec3(-1.275, 0.0, 0.0), vec3(0.15, 0.1, 0.16)); float nail = unionMin(unionRound(c, d, 0.1), e); float ret = unionMin(ring, nail); return ret; } vec2 castRay(in vec3 ro, in vec3 rd, mat3 localToWorld) { const float maxd = 5.0; float h = 0.5; float t = 0.0; float steps = 0.0; for (int i = 0; i < 180; ++i) { if (h < 0.001 || t > maxd) { break; } h = scene(ro + rd * t, localToWorld) / 4.0; t += h; steps += 1.0; } if (t > maxd) { t = -1.0; } return vec2(t, steps); } vec3 sceneNormal(in vec3 pos, mat3 localToWorld) { vec3 eps = vec3(0.001, 0.0, 0.0); vec3 nor = vec3( scene(pos + eps.xyy, localToWorld) - scene(pos - eps.xyy, localToWorld), scene(pos + eps.yxy, localToWorld) - scene(pos - eps.yxy, localToWorld), scene(pos + eps.yyx, localToWorld) - scene(pos - eps.yyx, localToWorld) ); return normalize(-nor); } void main(void) { vec2 q = gl_FragCoord.xy / resolution.xy; vec2 p = -1.0 + 2.0 * q; p.x *= resolution.x / resolution.y; float frameScale = 29.97; float frameTime = floor(time * frameScale) / frameScale; vec3 rayOrigin = vec3(0.0, -0.28, -3.5); vec3 rayDir = normalize(vec3(p.x, p.y, 2.0)); float theta = -0.5 * PI; mat3 rotX = mat3( vec3(+cos(theta), +sin(theta), 0.0), vec3(-sin(theta), +cos(theta), 0.0), vec3(0.0, 0.0, 1.0) ); float phi = 0.25 * PI + 2.0 * frameTime; mat3 rotY = mat3( vec3(1.0, 0.0, 0.0), vec3(0.0, +cos(phi), +sin(phi)), vec3(0.0, -sin(phi), +cos(phi)) ); mat3 localToWorld = rotX * rotY; float minRes = min (resolution.x, resolution.y); vec2 fc = gl_FragCoord.xy / minRes; float wt = frameTime * bgWaveSpeed; float xAngle = wt + fc.y * ySineCycles; float yAngle = wt + fc.x * xSineCycles; bool bxHalf, byHalf; vec2 distortOffset = vec2(sin(xAngle), sin(yAngle)) * vec2(xDistMag, yDistMag); vec3 color = vec3(texture2D(noiseTexture, (fc) + distortOffset).z) * 0.55; color = clamp(color * color * color * color * 5.0, 0.0, 1.0); vec2 t = castRay(rayOrigin, rayDir, localToWorld); if (t.x > 0.0) { vec3 pos = rayOrigin + t.x * rayDir; vec3 normal = sceneNormal(pos, localToWorld); vec3 lightDir = normalize(vec3(0.5, 0.3, 1.0)); vec3 lightColor = vec3(1.6); vec3 posLS = pos * localToWorld; vec3 nrmLS = normal * localToWorld; vec2 uvX = posLS.yz; vec2 uvY = posLS.xz; vec2 uvZ = posLS.xy; vec3 textureX = texture2D(eTexture1, uvX).xyz; vec3 textureY = texture2D(eTexture1, uvY).xyz; vec3 textureZ = texture2D(eTexture1, uvZ).xyz; vec3 weights = max(abs(nrmLS), 0.00001); weights /= weights.x + weights.y + weights.z; vec3 texture = textureX * weights.x + textureY * weights.y + textureZ * weights.z; float rustMask = clamp(texture.x * 3.0 - 0.5, 0.0, 1.0); vec3 diffuseColor = mix(vec3(0.0), texture, rustMask); diffuseColor *= diffuseColor * vec3(0.94, 0.72, 0.47) * 1.5; vec3 specularColor = mix(texture, vec3(0.04), rustMask); float roughness = mix(0.2, 0.6, rustMask); vec3 diffuse = lightColor * clamp(dot(normal, lightDir), 0.0, 1.0); color = diffuseColor * (diffuse + 0.2); color += lightSpecular(normal, rayDir, lightDir, lightColor, roughness, specularColor); } if (sin(frameTime - 0.25) >= 0.92) { color += vec3(t.y / 250.0, sin(frameTime) * t.y / 400.0, 0.0) * (sin(frameTime - 0.25) - 0.92) * 30.0; } gl_FragColor = vec4(color, 1.0); }
// ╔═════════════╦════════════════╗ // ║ Marco Gomez ║ https://mgz.me ║ // ╚═════════════╩════════════════╝ precision highp float; uniform sampler2D prgm1Texture; uniform vec2 resolution; uniform vec2 mouselerp; uniform float time; uniform float fft; const float PI = acos(-1.0); const float TAU = PI * 2.0; const int NUM_SAMPLES = 16; const float Density = 0.25; const float Weight = 0.5; const float Exposure = 0.5; float rand(vec2 co) { return fract(sin(dot(co.xy, vec2(12.9898, 78.233))) * 43758.5453); } void main(void) { vec2 uv = gl_FragCoord.xy / resolution.xy; vec2 suv = uv; float frameScale = 29.97; float frameTime = floor(time * frameScale) / frameScale; vec2 dist = (uv - 0.5); float Density = 0.75 + 0.2 * sin(2.0 * radians(360.0)); dist *= 1.0 / float(NUM_SAMPLES) * Density; vec3 color = texture2D(prgm1Texture, uv).rgb; float illuminationDecay = 1.0; for (int i = 0; i < NUM_SAMPLES; i++) { uv -= dist; vec3 sample_ = texture2D(prgm1Texture, uv + dist * rand(uv + time * 0.001)).rgb; sample_ *= illuminationDecay * Weight; color += sample_; float Decay = 0.6 + fft * 0.4; illuminationDecay *= Decay; } vec4 finalColor = texture2D(prgm1Texture, suv); float m = clamp(sin(frameTime - 0.25) * 0.75, 0.0, 1.0); finalColor = mix(finalColor, vec4(color, 1.0), m); gl_FragColor = finalColor; }
// ╔═════════════╦════════════════╗ // ║ Marco Gomez ║ https://mgz.me ║ // ╚═════════════╩════════════════╝ precision highp float; uniform sampler2D prgm2Texture; uniform vec2 resolution; uniform float time; const float PI = acos(-1.0); const float TAU = PI * 2.0; const float hardscan = -16.0; const float hardPix = -4.0; const float maskDark = 0.5; const float maskLight = 2.5; float toLinear(float c) { return (c <= 0.04045) ? c / 12.92 : pow(abs((c + 0.055) / 1.055), 2.4); } vec3 toLinear(vec3 c) { return vec3(toLinear(c.r), toLinear(c.g), toLinear(c.b)); } float toSRGB(float c) { return(c < 0.0031308 ? c * 12.92 : 1.055 * pow(abs(c), 0.41666) - 0.055); } vec3 toSRGB(vec3 c) { return vec3(toSRGB(c.r), toSRGB(c.g), toSRGB(c.b)); } vec3 fetch(vec2 pos, vec2 off, vec2 res) { pos = floor(pos * res + off) / res; if (max(abs(pos.x - 0.5), abs(pos.y - 0.5)) > 0.5) { return vec3(0.0); } return toLinear(texture2D(prgm2Texture, pos.xy, -16.0).xyz); } vec2 dist(vec2 pos, vec2 res) { pos = pos * res; return -((pos - floor(pos)) - vec2(0.5)); } float gauss(float pos, float scale) { return exp2(scale * pos * pos); } vec3 horz3(vec2 pos, float off, vec2 res) { vec3 b = fetch(pos, vec2(-1.0, off), res); vec3 c = fetch(pos, vec2(+0.0, off), res); vec3 d = fetch(pos, vec2(+1.0, off), res); float dst = dist(pos, res).x; float scale = hardPix; float wb = gauss(dst - 1.0, scale); float wc = gauss(dst + 0.0, scale); float wd = gauss(dst + 1.0, scale); return (b * wb + c * wc + d * wd) / (wb + wc + wd); } vec3 horz5(vec2 pos, float off, vec2 res) { vec3 a = fetch(pos, vec2(-2.0, off), res); vec3 b = fetch(pos, vec2(-1.0, off), res); vec3 c = fetch(pos, vec2(+0.0, off), res); vec3 d = fetch(pos, vec2(+1.0, off), res); vec3 e = fetch(pos, vec2(+2.0, off), res); float dst = dist(pos, res).x; float scale = hardPix; float wa = gauss(dst - 2.0, scale); float wb = gauss(dst - 1.0, scale); float wc = gauss(dst + 0.0, scale); float wd = gauss(dst + 1.0, scale); float we = gauss(dst + 2.0, scale); return (a * wa + b * wb + c * wc + d * wd + e * we) / (wa + wb + wc + wd + we); } float scan(vec2 pos, float off, vec2 res) { float dst = dist(pos, res).y; return gauss(dst + off, hardscan); } vec3 tri(vec2 pos, vec2 res) { vec3 a = horz3(pos, -1.0, res); vec3 b = horz5(pos, +0.0, res); vec3 c = horz3(pos, +1.0, res); float wa = scan(pos, -1.0, res); float wb = scan(pos, +0.0, res); float wc = scan(pos, +1.0, res); return a * wa + b * wb + c * wc; } vec3 mask(vec2 pos) { pos.x += pos.y * 3.0; vec3 m = vec3(maskDark, maskDark, maskDark); pos.x = fract(pos.x / 6.0); if (pos.x < 0.333) { m.r = maskLight; } else if (pos.x < 0.666) { m.g = maskLight; } else { m.b = maskLight; } return m; } float bar(float pos, float bar) { pos -= bar; return pos * pos < 4.0 ? 0.0 : 1.0; } float rand(vec2 uv, float t) { float seed = dot(uv, vec2(12.9898, 78.233)); return fract(sin(seed) * 43758.5453123 + t); } float gaussian(float z, float u, float o) { return ( (1.0 / (o * sqrt(TAU))) * (exp(-(((z - u) * (z - u)) / (2.0 * (o * o))))) ); } vec3 gaussgrain(float t) { vec2 ps = vec2(1.0) / resolution.xy; vec2 uv = gl_FragCoord.xy * ps; float noise = rand(uv, t); noise = gaussian(noise, 0.0, 0.5); return vec3(noise); } vec2 warp(vec2 uv, vec2 warpAmount) { uv = uv * 2.0 - 1.0; vec2 offset = abs(uv.yx) / vec2(warpAmount.x, warpAmount.y); uv = uv + uv * offset * offset; uv = uv * 0.5 + 0.5; return uv; } void drawVig(inout vec3 color, vec2 uv) { float vignette = uv.x * uv.y * (1.0 - uv.x) * (1.0 - uv.y); vignette = clamp(pow(abs(16.0 * vignette), 0.1), 0.0, 1.0); color *= vignette; } void main(void) { vec2 warpAmount = vec2(7.0, 5.0); vec2 res = vec2(640.0, 320.0); vec2 uv = gl_FragCoord.xy / resolution.xy; float vig = (0.0 + 1.0 * 21.0 * uv.x * uv.y * (1.0 - uv.x) * (1.0 - uv.y)); float v = exp(-0.01 * length(uv)) * vig; float frameScale = 29.97; float frameTime = floor(time * frameScale) / frameScale; vec3 g = gaussgrain(frameTime) * 0.07; vec2 pos = warp(uv, warpAmount); vec4 color = vec4(tri(pos, res) * mask(gl_FragCoord.xy), 1.0); color.xyz = toSRGB(color.xyz * 2.0) - g; color = mix(color, color * v, 0.5); drawVig(color.xyz, pos); gl_FragColor = color; }
xxxxxxxxxx
// ╔═════════════╦════════════════╗
// ║ Marco Gomez ║ https://mgz.me ║
// ╚═════════════╩════════════════╝
precision highp float;
uniform sampler2D prgm3Texture;
uniform vec2 resolution;
void main(void) {
vec2 uv = gl_FragCoord.xy / resolution.xy;
vec4 prgm3 = texture2D(prgm3Texture, uv);
gl_FragColor = prgm3;
}
114 fps 14ms
00:00:00.25
0.00