- Sign In
- Sign Up
The Rhombic Triacontahedron AA
This is a piece made to experiment with my first implementation of samplerCube uniforms on XYZ Shader Editor so I can compose scenes with HDRI skyboxes, this version with TXAA (temporal anti-aliasing).
Created by marcogomez on Wed, 20 Oct 2021 01:56:47 GMT.
#version 300 es // ╔═════════════╦════════════════╗ // ║ Marco Gomez ║ https://mgz.me ║ // ╚═════════════╩════════════════╝ precision highp float; // Cubemap declared on PRGM1 // you can find some nice HDRIs at https://polyhaven.com/hdris // you can convert HDRI to Cubemap with https://matheowis.github.io/HDRI-to-CubeMap/ uniform sampler2D prgm2Texture; uniform sampler2D prgm6Texture; uniform vec2 resolution; uniform vec2 mouselerp; uniform float time; out vec4 fragColor; const float PI = acos(-1.0); const float TAU = PI * 2.0; float osc(float s, float e, float t, float ts) { return (e - s) / 2.0 + s + sin(t * ts) * (e - s) * 0.5; } vec2 warp(vec2 uv, vec2 warpAmount) { uv = uv * 2.0 - 1.0; vec2 offset = abs(uv.yx) / vec2(warpAmount.x, warpAmount.y); uv = uv + uv * offset * offset; uv = uv * 0.5 + 0.5; return uv; } float gaussian(float z, float u, float o) { return ( (1.0 / (o * sqrt(TAU))) * (exp(-(((z - u) * (z - u)) / (2.0 * (o * o))))) ); } vec3 gaussgrain(float t) { vec2 ps = vec2(1.0) / resolution.xy; vec2 uv = gl_FragCoord.xy * ps; float seed = dot(uv, vec2(12.9898, 78.233)); float noise = fract(sin(seed) * 43758.5453123 + t); noise = gaussian(noise, 0.0, 0.5); return vec3(noise); } void main(void) { vec2 uv = gl_FragCoord.xy / resolution.xy; vec4 prgm2 = texture(prgm2Texture, uv); vec4 prgm6 = texture(prgm6Texture, uv); float frameScale = 29.97; float frameTime = floor(time * frameScale) / frameScale; vec3 grainA = gaussgrain(frameTime * 1.0); vec3 grainB = gaussgrain(frameTime * 1.3); float m = clamp(1.0 - length(uv - 0.5), 0.0, 1.0); fragColor = mix(prgm2, prgm6, m * 0.7); fragColor.xyz += grainA * grainB * 0.1; fragColor.a = 1.0; }
#version 300 es // ╔═════════════╦════════════════╗ // ║ Marco Gomez ║ https://mgz.me ║ // ╚═════════════╩════════════════╝ precision highp float; // This is a demo of my initial implementation of samplerCube uniforms for XYZ // you can find some nice HDRIs at https://polyhaven.com/hdris // you can convert HDRI to Cubemap with https://matheowis.github.io/HDRI-to-CubeMap/ uniform sampler2D cubemapTexture0PX; // https://i.imgur.com/95JX8bl.png uniform sampler2D cubemapTexture0NX; // https://i.imgur.com/Dr7yhmD.png uniform sampler2D cubemapTexture0PY; // https://i.imgur.com/OvMX9n3.png uniform sampler2D cubemapTexture0NY; // https://i.imgur.com/BDlj5mI.png uniform sampler2D cubemapTexture0PZ; // https://i.imgur.com/d7fMPcO.png uniform sampler2D cubemapTexture0NZ; // https://i.imgur.com/iDyUMaf.png uniform samplerCube cubemap0; uniform vec2 resolution; uniform vec2 mouselerp; uniform vec2 mouse; uniform float time; uniform float fft; out vec4 fragColor; const int maxSteps = 128; const float maxDistance = 10.0; const float surfaceDistance = 0.001; const float PI = acos(-1.0); const float TAU = PI * 2.0; float acc; mat2 rotate(float a) { float s = sin(a); float c = cos(a); return mat2(c, -s, s, c); } float osc(float s, float e, float t, float ts) { return (e - s) / 2.0 + s + sin(t * ts) * (e - s) * 0.5; } vec3 disturb(vec3 s, vec3 a) { float minRes = min (resolution.x, resolution.y); vec2 fc = gl_FragCoord.xy / minRes; float wt = time * 2.0; vec2 distortOffset = vec2(sin(wt + fc.y * TAU), sin(wt + fc.x * TAU)) * vec2(0.5); a.xy += distortOffset; vec3 disturbed = vec3( s.x * 1.0 + 0.03 * sin(3.0 * time + fft + a.x * 5.0 - fft * 5.0) + 0.02 * sin(2.0 * time + fft + a.y * 4.0 + fft * 4.0) + 0.01 * sin(1.0 * time + fft + a.z * 3.0 + fft * 3.0), s.y * 1.0 + 0.04 * sin(4.0 * time + fft + a.x * 4.0 + fft * 4.0) + 0.03 * sin(3.0 * time + fft + a.y * 3.0 - fft * 3.0) + 0.02 * sin(2.0 * time + fft + a.z * 2.0 + fft * 2.0), s.z * 1.0 + 0.05 * sin(2.0 * time + a.x * 3.0 + fft * 3.0) + 0.04 * sin(1.0 * time + a.y * 2.0 + fft * 2.0) + 0.03 * sin(3.0 * time + a.z * 1.0 + fft - 1.0) ); return disturbed; } float getDist(vec3 p) { float yOff = abs(sin(2.0 * PI * osc(0.0, 0.3, time, 1.0))) * 0.5; p.y += -0.3 + yOff; p.xz *= rotate(-time * 0.25 - mouselerp.x * PI * 0.35); float c = cos(PI / 5.0); float s = sqrt(0.75 - c * c); vec3 n = vec3(-0.5, -c, s); p = mix(disturb(p, p), p, 0.25); p = abs(p); p -= 2.0 * min(0.0, dot(p, n)) * n; p.xy = abs(p.xy); p -= 2.0 * min(0.0, dot(p, n)) * n; p.xy = abs(p.xy); p -= 2.0 * min(0.0, dot(p, n)) * n; float dist = p.z - 1.0 - fft * 0.3; return dist; } float rayMarch(vec3 ro, vec3 rd, float side) { float dist = 0.0; for (int i = 0; i < maxSteps; i++) { vec3 p = ro + rd * dist; float distSide = getDist(p) * side; dist += distSide; if (dist > maxDistance || abs(distSide) < surfaceDistance) { break; } } return dist; } vec3 getNormal(vec3 p) { float d = getDist(p); vec2 closeSample = vec2(0.05, 0.0); vec3 closeSampleV3 = vec3( getDist(p - closeSample.xyy), getDist(p - closeSample.yxy), getDist(p - closeSample.yyx) ); vec3 normal = d - closeSampleV3; return normalize(normal); } vec3 getRayDir(vec2 uv, vec3 p, vec3 l, float z) { vec3 f = normalize(l - p); vec3 r = normalize(cross(vec3(0.0, 1.0, osc(-0.02, 0.02, time, 0.25)), f)); vec3 u = cross(f, r); vec3 c = f * z; vec3 i = c + uv.x * r + uv.y * u; vec3 dir = normalize(i); return dir; } void main(void) { vec2 uv = (gl_FragCoord.xy - 0.5 * resolution.xy) / resolution.y; vec2 mousePos = vec2(mouselerp.x, (mouselerp.y + 0.25) * 0.25); vec3 ro = vec3(0.0, 1.0, -5.0) * 0.7; bool isMouseOut = length(mouse) > 2.0; if (isMouseOut) { acc += time * 0.125; } ro.yz *= rotate((-mousePos.y * PI)); ro.xz *= rotate((-mousePos.x * TAU) - acc); vec3 rd = getRayDir(uv, ro, vec3(0.0), 0.6); vec3 col = texture(cubemap0, rd).rgb; float d = rayMarch(ro, rd, 1.0); float refractionIdx = 1.45; if (d < maxDistance) { vec3 p = ro + rd * d; vec3 n = getNormal(p); vec3 r = reflect(rd, n); vec3 refOutside = texture(cubemap0, r).rgb; vec3 rdIn = refract(rd, n, 1.0 / refractionIdx); vec3 pEnter = p - n * surfaceDistance * 3.0; float dIn = rayMarch(pEnter, rdIn, -1.0); vec3 pExit = pEnter + rdIn * dIn; vec3 nExit = -getNormal(pExit); vec3 reflTex = vec3(0.0); vec3 rdOut = vec3(0.0); float abb = 0.01; rdOut = refract(rdIn, nExit, refractionIdx - abb); if (dot(rdOut, rdOut) == 0.0) { rdOut = reflect(rdIn, nExit); } reflTex.r = texture(cubemap0, rdOut).r; rdOut = refract(rdIn, nExit, refractionIdx); if (dot(rdOut, rdOut) == 0.0) { rdOut = reflect(rdIn, nExit); } reflTex.g = texture(cubemap0, rdOut).g; rdOut = refract(rdIn, nExit, refractionIdx + abb); if (dot(rdOut, rdOut) == 0.0) { rdOut = reflect(rdIn, nExit); } reflTex.b = texture(cubemap0, rdOut).b; float dens = 0.2; float optDist = exp(-dIn * dens); reflTex = reflTex * optDist; float fresnel = pow(1.0 + dot(rd, n), 5.0); col = mix(reflTex, refOutside, fresnel); col = mix(col, (col * n * 2.0 * refOutside / (reflTex + 1e-4)) * 0.5 + 0.5, 0.07); } fragColor = clamp(vec4(col, 1.0), 0.0, 1.0); }
#version 300 es // ╔═════════════╦════════════════╗ // ║ Marco Gomez ║ https://mgz.me ║ // ╚═════════════╩════════════════╝ precision highp float; uniform sampler2D prgm1Texture; uniform sampler2D prgm2Texture; uniform vec2 resolution; uniform float time; #define inputTexture prgm1Texture #define inoutTexture prgm2Texture out vec4 fragColor; vec3 encodePalYuv(vec3 rgb) { rgb = pow(rgb, vec3(2.0)); return vec3( dot(rgb, vec3(0.299, 0.587, 0.114)), dot(rgb, vec3(-0.14713, -0.28886, 0.436)), dot(rgb, vec3(0.615, -0.51499, -0.10001)) ); } vec3 decodePalYuv(vec3 yuv) { vec3 rgb = vec3( dot(yuv, vec3(1., 0., 1.13983)), dot(yuv, vec3(1., -0.39465, -0.58060)), dot(yuv, vec3(1., 2.03211, 0.)) ); return pow(rgb, vec3(1.0 / 2.0)); } void main(void) { vec2 uv = gl_FragCoord.xy / resolution.xy; vec4 lastColor = texture(inoutTexture, uv); vec3 antialiased = lastColor.xyz; float mixRate = clamp(lastColor.w, 0.01, 0.5); vec2 off = 1.0 / resolution.xy; vec3 in0 = texture(inputTexture, uv).xyz; antialiased = mix(antialiased * antialiased, in0 * in0, mixRate); antialiased = sqrt(antialiased); vec3 in1 = texture(inputTexture, uv + vec2(+off.x, 0.0)).xyz; vec3 in2 = texture(inputTexture, uv + vec2(-off.x, 0.0)).xyz; vec3 in3 = texture(inputTexture, uv + vec2(0.0, +off.y)).xyz; vec3 in4 = texture(inputTexture, uv + vec2(0.0, -off.y)).xyz; vec3 in5 = texture(inputTexture, uv + vec2(+off.x, +off.y)).xyz; vec3 in6 = texture(inputTexture, uv + vec2(-off.x, +off.y)).xyz; vec3 in7 = texture(inputTexture, uv + vec2(+off.x, -off.y)).xyz; vec3 in8 = texture(inputTexture, uv + vec2(-off.x, -off.y)).xyz; in0 = encodePalYuv(in0); in1 = encodePalYuv(in1); in2 = encodePalYuv(in2); in3 = encodePalYuv(in3); in4 = encodePalYuv(in4); in5 = encodePalYuv(in5); in6 = encodePalYuv(in6); in7 = encodePalYuv(in7); in8 = encodePalYuv(in8); vec3 minColor = min(min(min(in0, in1), min(in2, in3)), in4); vec3 maxColor = max(max(max(in0, in1), max(in2, in3)), in4); minColor = mix( minColor, min(min(min(in5, in6), min(in7, in8)), minColor), 0.5 ); maxColor = mix( maxColor, max(max(max(in5, in6), max(in7, in8)), maxColor), 0.5 ); vec3 preclamping = antialiased; antialiased = clamp(antialiased, minColor, maxColor); mixRate = 1.0 / (1.0 / mixRate + 1.0); vec3 diff = antialiased - preclamping; float clampAmount = dot(diff, diff); mixRate += clampAmount * 4.0; mixRate = clamp(mixRate, 0.05, 0.5); antialiased = decodePalYuv(antialiased); fragColor = vec4(antialiased, mixRate); }
#version 300 es // ╔═════════════╦════════════════╗ // ║ Marco Gomez ║ https://mgz.me ║ // ╚═════════════╩════════════════╝ precision highp float; uniform sampler2D prgm2Texture; uniform vec2 resolution; uniform float time; #define inputTexture prgm2Texture out vec4 fragColor; vec3 texSample(const int x, const int y, vec2 fragCoord) { vec2 uv = gl_FragCoord.xy / resolution.xy * resolution.xy; uv = (uv + vec2(x, y)) / resolution.xy; return texture(inputTexture, uv).xyz; } vec3 sharpenFilter(vec2 fragCoord, float strength) { vec3 f = ( texSample(-1, -1, fragCoord) * -1.0 + texSample(+1, -1, fragCoord) * -1.0 + texSample(+0, +0, fragCoord) * +5.0 + texSample(-1, +1, fragCoord) * -1.0 + texSample(+1, +1, fragCoord) * -1.0 ); return mix(texSample( 0, 0, fragCoord), f , strength); } void main(void) { vec2 uv = gl_FragCoord.xy / resolution.xy; fragColor = vec4(sharpenFilter(gl_FragCoord.xy, 0.35), 1.0); }
#version 300 es // ╔═════════════╦════════════════╗ // ║ Marco Gomez ║ https://mgz.me ║ // ╚═════════════╩════════════════╝ precision highp float; uniform sampler2D prgm3Texture; uniform vec2 resolution; uniform float time; #define inputTexture prgm3Texture out vec4 fragColor; #define FXAA 1 #ifndef FXAA_PRESET #define FXAA_PRESET 5 #define FXAA_DEBUG_SKIPPED 0 #define FXAA_DEBUG_PASSTHROUGH 0 #define FXAA_DEBUG_HORZVERT 0 #define FXAA_DEBUG_PAIR 0 #define FXAA_DEBUG_NEGPOS 0 #define FXAA_DEBUG_OFFSET 0 #define FXAA_DEBUG_HIGHLIGHT 0 #define FXAA_LUMINANCE 1 #endif #if (FXAA_PRESET == 0) #define FXAA_EDGE_THRESHOLD (1.0 / 4.0) #define FXAA_EDGE_THRESHOLD_MIN (1.0 / 12.0) #define FXAA_SEARCH_STEPS 2 #define FXAA_SEARCH_ACCELERATION 4 #define FXAA_SEARCH_THRESHOLD (1.0 / 4.0) #define FXAA_SUBPIX 1 #define FXAA_SUBPIX_FASTER 1 #define FXAA_SUBPIX_CAP (2.0 / 3.0) #define FXAA_SUBPIX_TRIM (1.0 / 4.0) #endif #if (FXAA_PRESET == 1) #define FXAA_EDGE_THRESHOLD (1.0 / 8.0) #define FXAA_EDGE_THRESHOLD_MIN (1.0 / 16.0) #define FXAA_SEARCH_STEPS 4 #define FXAA_SEARCH_ACCELERATION 3 #define FXAA_SEARCH_THRESHOLD (1.0 / 4.0) #define FXAA_SUBPIX 1 #define FXAA_SUBPIX_FASTER 0 #define FXAA_SUBPIX_CAP (3.0 / 4.0) #define FXAA_SUBPIX_TRIM (1.0 / 4.0) #endif #if (FXAA_PRESET == 2) #define FXAA_EDGE_THRESHOLD (1.0 / 8.0) #define FXAA_EDGE_THRESHOLD_MIN (1.0 / 24.0) #define FXAA_SEARCH_STEPS 8 #define FXAA_SEARCH_ACCELERATION 2 #define FXAA_SEARCH_THRESHOLD (1.0 / 4.0) #define FXAA_SUBPIX 1 #define FXAA_SUBPIX_FASTER 0 #define FXAA_SUBPIX_CAP (3.0 / 4.0) #define FXAA_SUBPIX_TRIM (1.0 / 4.0) #endif #if (FXAA_PRESET == 3) #define FXAA_EDGE_THRESHOLD (1.0 / 8.0) #define FXAA_EDGE_THRESHOLD_MIN (1.0 / 24.0) #define FXAA_SEARCH_STEPS 16 #define FXAA_SEARCH_ACCELERATION 1 #define FXAA_SEARCH_THRESHOLD (1.0 / 4.0) #define FXAA_SUBPIX 1 #define FXAA_SUBPIX_FASTER 0 #define FXAA_SUBPIX_CAP (3.0 / 4.0) #define FXAA_SUBPIX_TRIM (1.0 / 4.0) #endif #if (FXAA_PRESET == 4) #define FXAA_EDGE_THRESHOLD (1.0 / 8.0) #define FXAA_EDGE_THRESHOLD_MIN (1.0 / 24.0) #define FXAA_SEARCH_STEPS 24 #define FXAA_SEARCH_ACCELERATION 1 #define FXAA_SEARCH_THRESHOLD (1.0 / 4.0) #define FXAA_SUBPIX 1 #define FXAA_SUBPIX_FASTER 0 #define FXAA_SUBPIX_CAP (3.0 / 4.0) #define FXAA_SUBPIX_TRIM (1.0 / 4.0) #endif #if (FXAA_PRESET == 5) #define FXAA_EDGE_THRESHOLD (1.0 / 8.0) #define FXAA_EDGE_THRESHOLD_MIN (1.0 / 24.0) #define FXAA_SEARCH_STEPS 32 #define FXAA_SEARCH_ACCELERATION 1 #define FXAA_SEARCH_THRESHOLD (1.0 / 4.0) #define FXAA_SUBPIX 1 #define FXAA_SUBPIX_FASTER 0 #define FXAA_SUBPIX_CAP (3.0 / 4.0) #define FXAA_SUBPIX_TRIM (1.0 / 4.0) #endif #if (FXAA_PRESET == 6) #define FXAA_EDGE_THRESHOLD (1.0 / 8.0) #define FXAA_EDGE_THRESHOLD_MIN (1.0 / 24.0) #define FXAA_SEARCH_STEPS 128 #define FXAA_SEARCH_ACCELERATION 1 #define FXAA_SEARCH_THRESHOLD (1.0 / 4.0) #define FXAA_SUBPIX 1 #define FXAA_SUBPIX_FASTER 0 #define FXAA_SUBPIX_CAP (3.0 / 4.0) #define FXAA_SUBPIX_TRIM (1.0 / 4.0) #endif #define FXAA_SUBPIX_TRIM_SCALE (1.0 / (1.0 - FXAA_SUBPIX_TRIM)) vec2 ToVec2(float value) { return vec2(value, value); } vec3 ToVec3(float value) { return vec3(value, value, value); } vec3 ToVec3(vec2 vector, float z) { return vec3(vector.x, vector.y, z); } vec3 ToVec3(vec2 vector) { return ToVec3(vector, 0.0); } vec4 ToVec4(vec2 vector, float z, float w) { return vec4(vector.x, vector.y, z, w); } vec4 ToVec4(vec2 vector, float z) { return ToVec4(vector, z, 0.0); } vec4 ToVec4(vec2 vector) { return ToVec4(vector, 0.0); } vec4 ToVec4(vec3 vector, float w) { return vec4(vector.x, vector.y, vector.z, w); } vec4 ToVec4(vec3 vector) { return ToVec4(vector, 0.0); } vec4 ToVec4(float value, float w) { return vec4(value, value, value, w); } vec4 ToVec4(float value) { return ToVec4(value, 0.0); } vec4 TextureOffset(sampler2D tex, vec2 uv, vec2 offset) { return texture(tex, uv + offset); } vec3 Grayscale(vec3 color, int index) { int selectedChannel = clamp(index, 0, 2); return ToVec3(color[selectedChannel]); } vec4 Grayscale(vec4 color, int index) { int selectedChannel = clamp(index, 0, 3); return ToVec4(color[selectedChannel]); } vec3 Grayscale(vec3 color) { return Grayscale(color, 1); } vec4 Grayscale(vec4 color) { return Grayscale(color, 1); } float LinearRGBLuminance(vec3 color) { vec3 weight = vec3(0.2126729, 0.7151522, 0.0721750); return dot(color, weight); } float FXAALuminance(vec3 color) { #if FXAA_LUMINANCE == 0 return LinearRGBLuminance(color); #else return color.g * (0.587 / 0.299) + color.r; #endif } float FXAAVerticalEdge(float lumaO, float lumaN, float lumaE, float lumaS, float lumaW, float lumaNW, float lumaNE, float lumaSW, float lumaSE) { float top = (0.25 * lumaNW) + (-0.5 * lumaN) + (0.25 * lumaNE); float middle = (0.50 * lumaW ) + (-1.0 * lumaO) + (0.50 * lumaE ); float bottom = (0.25 * lumaSW) + (-0.5 * lumaS) + (0.25 * lumaSE); return abs(top) + abs(middle) + abs(bottom); } float FXAAHorizontalEdge(float lumaO, float lumaN, float lumaE, float lumaS, float lumaW, float lumaNW, float lumaNE, float lumaSW, float lumaSE) { float top = (0.25 * lumaNW) + (-0.5 * lumaW) + (0.25 * lumaSW); float middle = (0.50 * lumaN ) + (-1.0 * lumaO) + (0.50 * lumaS); float bottom = (0.25 * lumaNE) + (-0.5 * lumaE) + (0.25 * lumaSE); return abs(top) + abs(middle) + abs(bottom); } vec3 applyFXAA(sampler2D textureSource, vec2 textureDimensions, vec2 pixelPosition, vec2 screenResolution) { vec2 uv = pixelPosition / screenResolution; vec2 texel = vec2(1.0, 1.0) / textureDimensions; vec3 rgbN = TextureOffset(textureSource, uv, vec2(0, -texel.y)).rgb; vec3 rgbW = TextureOffset(textureSource, uv, vec2(-texel.x, 0)).rgb; vec3 rgbO = TextureOffset(textureSource, uv, vec2(0, 0)).rgb; vec3 rgbE = TextureOffset(textureSource, uv, vec2(texel.x, 0)).rgb; vec3 rgbS = TextureOffset(textureSource, uv, vec2(0, texel.y)).rgb; #if FXAA == 0 return rgbO; #endif float lumaN = FXAALuminance(rgbN); float lumaW = FXAALuminance(rgbW); float lumaO = FXAALuminance(rgbO); float lumaE = FXAALuminance(rgbE); float lumaS = FXAALuminance(rgbS); float minLuma = min(lumaO, min(min(lumaN, lumaW), min(lumaS, lumaE))); float maxLuma = max(lumaO, max(max(lumaN, lumaW), max(lumaS, lumaE))); float localContrast = maxLuma - minLuma; if (localContrast < max(FXAA_EDGE_THRESHOLD_MIN, maxLuma * FXAA_EDGE_THRESHOLD)) { #if FXAA_DEBUG_SKIPPED return vec3(0); #else return rgbO; #endif } #if FXAA_SUBPIX > 0 vec3 rgbL = (rgbN + rgbW + rgbO + rgbE + rgbS); #if FXAA_SUBPIX_FASTER rgbL *= (1.0 / 5.0); #endif float lumaL = (lumaN + lumaW + lumaS + lumaE) * 0.25; float pixelContrast = abs(lumaL - lumaO); float contrastRatio = pixelContrast / localContrast; float lowpassBlend = 0.0; #if FXAA_SUBPIX == 1 lowpassBlend = max(0.0, contrastRatio - FXAA_SUBPIX_TRIM) * FXAA_SUBPIX_TRIM_SCALE; lowpassBlend = min(FXAA_SUBPIX_CAP, lowpassBlend); #elif FXAA_SUBPIX == 2 lowpassBlend = contrastRatio; #endif #endif #if FXAA_DEBUG_PASSTHROUGH #if FXAA_SUBPIX > 0 return vec3(localContrast, lowpassBlend, 0.0); #else return vec3(localContrast, 0.0, 0.0); #endif #endif vec3 rgbNW = TextureOffset(textureSource, uv, vec2(-texel.x, -texel.y)).rgb; vec3 rgbNE = TextureOffset(textureSource, uv, vec2(texel.x, -texel.y)).rgb; vec3 rgbSW = TextureOffset(textureSource, uv, vec2(-texel.x, texel.y)).rgb; vec3 rgbSE = TextureOffset(textureSource, uv, vec2(texel.x, texel.y)).rgb; #if FXAA_SUBPIX > 0 #if FXAA_SUBPIX_FASTER == 0 rgbL += (rgbNW + rgbNE + rgbSW + rgbSE); rgbL *= (1.0 / 9.0); #endif #endif float lumaNW = FXAALuminance(rgbNW); float lumaNE = FXAALuminance(rgbNE); float lumaSW = FXAALuminance(rgbSW); float lumaSE = FXAALuminance(rgbSE); float edgeVert = FXAAVerticalEdge(lumaO, lumaN, lumaE, lumaS, lumaW, lumaNW, lumaNE, lumaSW, lumaSE); float edgeHori = FXAAHorizontalEdge(lumaO, lumaN, lumaE, lumaS, lumaW, lumaNW, lumaNE, lumaSW, lumaSE); bool isHorizontal = edgeHori >= edgeVert; #if FXAA_DEBUG_HORZVERT if (isHorizontal) { return vec3(1.0, 0.75, 0.0); } else { return vec3(0.10, 0.10, 1.0); } #endif float edgeSign = isHorizontal ? -texel.y : -texel.x; float gradientNeg = isHorizontal ? abs(lumaN - lumaO) : abs(lumaW - lumaO); float gradientPos = isHorizontal ? abs(lumaS - lumaO) : abs(lumaE - lumaO); float lumaNeg = isHorizontal ? ((lumaN + lumaO) * 0.5) : ((lumaW + lumaO) * 0.5); float lumaPos = isHorizontal ? ((lumaS + lumaO) * 0.5) : ((lumaE + lumaO) * 0.5); bool isNegative = (gradientNeg >= gradientPos); float gradientHighest = isNegative ? gradientNeg : gradientPos; float lumaHighest = isNegative ? lumaNeg : lumaPos; if (isNegative) { edgeSign *= -1.0; } #if FXAA_DEBUG_PAIR return isHorizontal ? vec3(0.0, gradientHighest, lumaHighest) : vec3(0.0, lumaHighest, gradientHighest); #endif vec2 pointN = vec2(0.0, 0.0); pointN.x = uv.x + (isHorizontal ? 0.0 : edgeSign * 0.5); pointN.y = uv.y + (isHorizontal ? edgeSign * 0.5 : 0.0); gradientHighest *= FXAA_SEARCH_THRESHOLD; vec2 pointP = pointN; vec2 pointOffset = isHorizontal ? vec2(texel.x, 0.0) : vec2(0.0, texel.y); float lumaNegEnd = lumaNeg; float lumaPosEnd = lumaPos; bool searchNeg = false; bool searchPos = false; if (FXAA_SEARCH_ACCELERATION == 1) { pointN += pointOffset * vec2(-1.0); pointP += pointOffset * vec2(1.0); } else if (FXAA_SEARCH_ACCELERATION == 2) { pointN += pointOffset * vec2(-1.5); pointP += pointOffset * vec2(1.5); pointOffset *= vec2(2.0); } else if (FXAA_SEARCH_ACCELERATION == 3) { pointN += pointOffset * vec2(-2.0); pointP += pointOffset * vec2(2.0); pointOffset *= vec2(3.0); } else if(FXAA_SEARCH_ACCELERATION == 4) { pointN += pointOffset * vec2(-2.5); pointP += pointOffset * vec2(2.5); pointOffset *= vec2(4.0); } for (int i = 0; i < FXAA_SEARCH_STEPS; i++) { if (FXAA_SEARCH_ACCELERATION == 1) { if (!searchNeg) { lumaNegEnd = FXAALuminance(texture(textureSource, pointN).rgb); } if (!searchPos) { lumaPosEnd = FXAALuminance(texture(textureSource, pointP).rgb); } } else { if (!searchNeg) { lumaNegEnd = FXAALuminance(textureGrad(textureSource, pointN, pointOffset, pointOffset).rgb); } if (!searchPos) { lumaPosEnd = FXAALuminance(textureGrad(textureSource, pointP, pointOffset, pointOffset).rgb); } } searchNeg = searchNeg || (abs(lumaNegEnd - lumaHighest) >= gradientHighest); searchPos = searchPos || (abs(lumaPosEnd - lumaHighest) >= gradientHighest); #if FXAA_DEBUG_NEGPOS if (searchNeg) { return vec3(abs(lumaNegEnd - gradientNeg), 0.0, 0.0); } else if (searchPos) { return vec3(0.0, 0.0, abs(lumaPosEnd - gradientPos)); } #endif if (searchNeg && searchPos) { break; } if (!searchNeg) { pointN -= pointOffset; } if (!searchPos) { pointP += pointOffset; } } float distanceNeg = isHorizontal ? uv.x - pointN.x : uv.y - pointN.y; float distancePos = isHorizontal ? pointP.x - uv.x : pointP.y - uv.y; bool isCloserToNegative = distanceNeg < distancePos; float lumaEnd = isCloserToNegative ? lumaNegEnd : lumaPosEnd; if (((lumaO - lumaNeg) < 0.0) == ((lumaEnd - lumaNeg) < 0.0)) { edgeSign = 0.0; } float filterSpanLength = (distancePos + distanceNeg); float filterDistance = isCloserToNegative ? distanceNeg : distancePos; float subpixelOffset = (0.5 + (filterDistance * (-1.0 / filterSpanLength))) * edgeSign; #if FXAA_DEBUG_OFFSET if (subpixelOffset < 0.0) { return isHorizontal ? vec3(1.0, 0.0, 0.0) : vec3(1.0, 0.7, 0.1); } if (subpixelOffset > 0.0) { return isHorizontal ? vec3(0.0, 0.0, 1.0) : vec3(0.1, 0.3, 1.0); } #endif vec3 rgbOffset = textureLod(textureSource, vec2(uv.x + (isHorizontal ? 0.0 : subpixelOffset), uv.y + (isHorizontal ? subpixelOffset : 0.0)), 0.0).rgb; #if FXAA_DEBUG_HIGHLIGHT return isHorizontal ? vec3(1.0, 0.0, 0.0) : vec3(0.0, 1.0, 0.0); #endif #if FXAA_SUBPIX == 0 return vec3(rgbOffset); #else return mix(rgbOffset, rgbL, lowpassBlend); #endif } void main(void) { vec3 resultFXAA = applyFXAA(inputTexture, resolution.xy, gl_FragCoord.xy, resolution.xy); fragColor = ToVec4(resultFXAA, 1.0); }
#version 300 es // ╔═════════════╦════════════════╗ // ║ Marco Gomez ║ https://mgz.me ║ // ╚═════════════╩════════════════╝ precision highp float; uniform sampler2D prgm4Texture; uniform vec2 resolution; uniform float time; out vec4 fragColor; #define inputTexture prgm4Texture const float amount = 1.0; const float contrast = 1.3; const float saturation = 0.7; const float brightness = 2.5; const float reinhardAmount = 1.0; const float matrixAmount = 0.1; const float gaussGrainAmount = 0.1; const float frameTimeScale = 29.97; const vec2 vignetteSize = vec2(0.25, 0.25); const float vignetteRoundness = 0.12; const float vignetteMix = 0.2; const float vignetteSmoothness = 0.42; const float W = 1.2; const float T = 7.5; const float PI = acos(-1.0); const float TAU = PI * 2.0; vec3 contrastSaturationBrightness(vec3 color, float brt, float sat, float con) { const float AvgLumR = 0.5; const float AvgLumG = 0.5; const float AvgLumB = 0.5; const vec3 LumCoeff = vec3(0.2125, 0.7154, 0.0721); vec3 AvgLumin = vec3(AvgLumR, AvgLumG, AvgLumB); vec3 brtColor = color * brt; vec3 intensity = vec3(dot(brtColor, LumCoeff)); vec3 satColor = mix(intensity, brtColor, sat); vec3 conColor = mix(AvgLumin, satColor, con); return conColor; } float filmicReinhardCurve(float x) { float q = (T * T + 1.0) * x * x; return q / (q + x + T * T); } vec3 filmicReinhard(vec3 c) { float w = filmicReinhardCurve(W); return vec3( filmicReinhardCurve(c.r), filmicReinhardCurve(c.g), filmicReinhardCurve(c.b) ) / w; } vec3 matrixTonemapping(vec3 color) { return vec3( pow(abs(color.r), (3.0 / 2.0)), pow(abs(color.g), (4.0 / 5.0)), pow(abs(color.b), (3.0 / 2.0)) ); } float gaussian(float z, float u, float o) { return ( (1.0 / (o * sqrt(TAU))) * (exp(-(((z - u) * (z - u)) / (2.0 * (o * o))))) ); } vec3 gaussgrain(float t) { vec2 ps = vec2(1.0) / resolution.xy; vec2 uv = gl_FragCoord.xy * ps; float seed = dot(uv, vec2(12.9898, 78.233)); float noise = fract(sin(seed) * 43758.5453123 + t); noise = gaussian(noise, 0.0, 0.5); return vec3(noise); } float sdSquare(vec2 point, float width) { vec2 d = abs(point) - width; return min(max(d.x, d.y), 0.0) + length(max(d, 0.0)); } float vignette(vec2 uv, vec2 size, float roundness, float smoothness) { uv -= 0.5; float minWidth = min(size.x, size.y); uv.x = sign(uv.x) * clamp(abs(uv.x) - abs(minWidth - size.x), 0.0, 1.0); uv.y = sign(uv.y) * clamp(abs(uv.y) - abs(minWidth - size.y), 0.0, 1.0); float boxSize = minWidth * (1.0 - roundness); float dist = sdSquare(uv, boxSize) - (minWidth * roundness); return 1.0 - smoothstep(0.0, smoothness, dist); } void main(void) { vec2 uv = gl_FragCoord.xy / resolution.xy; float frameTime = floor(time * frameTimeScale) / frameTimeScale; vec3 grainA = gaussgrain(frameTime * 1.1); vec3 grainB = gaussgrain(frameTime * 1.3); vec3 grain = grainA * grainB * gaussGrainAmount; vec4 tex = texture(inputTexture, uv); vec3 color = tex.rgb; vec3 reinhard = filmicReinhard(tex.rgb); vec3 matrix = matrixTonemapping(tex.rgb); color = mix(color, reinhard, reinhardAmount); color = contrastSaturationBrightness(color, brightness, saturation, contrast); color = mix(color, matrix, matrixAmount); float v = vignette(uv, vignetteSize, vignetteRoundness, vignetteSmoothness); vec3 vig = color * v; color = mix(color, vig, vignetteMix); color = mix(tex.xyz, color, amount); color -= grain; color = clamp(color, 0.0, 1.0); fragColor = vec4(color, 1.0); }
#version 300 es // ╔═════════════╦════════════════╗ // ║ Marco Gomez ║ https://mgz.me ║ // ╚═════════════╩════════════════╝ precision highp float; uniform sampler2D prgm5Texture; uniform vec2 resolution; uniform float time; #define inputTexture prgm5Texture out vec4 fragColor; const float PI = acos(-1.0); const float TAU = PI * 2.0; const float hardscan = -8.0; const float hardPix = -2.0; const float maskDark = 0.5; const float maskLight = 1.5; float toLinear(float c) { return (c <= 0.04045) ? c / 12.92 : pow(abs((c + 0.055) / 1.055), 2.4); } vec3 toLinear(vec3 c) { return vec3(toLinear(c.r), toLinear(c.g), toLinear(c.b)); } float toSRGB(float c) { return(c < 0.0031308 ? c * 12.92 : 1.055 * pow(abs(c), 0.41666) - 0.055); } vec3 toSRGB(vec3 c) { return vec3(toSRGB(c.r), toSRGB(c.g), toSRGB(c.b)); } vec3 fetch(vec2 pos, vec2 off, vec2 res) { pos = floor(pos * res + off) / res; if (max(abs(pos.x - 0.5), abs(pos.y - 0.5)) > 0.5) { return vec3(0.0); } return toLinear(texture(inputTexture, pos.xy, -16.0).xyz); } vec2 dist(vec2 pos, vec2 res) { pos = pos * res; return -((pos - floor(pos)) - vec2(0.5)); } float gauss(float pos, float scale) { return exp2(scale * pos * pos); } vec3 horz3(vec2 pos, float off, vec2 res) { vec3 b = fetch(pos, vec2(-1.0, off), res); vec3 c = fetch(pos, vec2(+0.0, off), res); vec3 d = fetch(pos, vec2(+1.0, off), res); float dst = dist(pos, res).x; float scale = hardPix; float wb = gauss(dst - 1.0, scale); float wc = gauss(dst + 0.0, scale); float wd = gauss(dst + 1.0, scale); return (b * wb + c * wc + d * wd) / (wb + wc + wd); } vec3 horz5(vec2 pos, float off, vec2 res) { vec3 a = fetch(pos, vec2(-2.0, off), res); vec3 b = fetch(pos, vec2(-1.0, off), res); vec3 c = fetch(pos, vec2(+0.0, off), res); vec3 d = fetch(pos, vec2(+1.0, off), res); vec3 e = fetch(pos, vec2(+2.0, off), res); float dst = dist(pos, res).x; float scale = hardPix; float wa = gauss(dst - 2.0, scale); float wb = gauss(dst - 1.0, scale); float wc = gauss(dst + 0.0, scale); float wd = gauss(dst + 1.0, scale); float we = gauss(dst + 2.0, scale); return (a * wa + b * wb + c * wc + d * wd + e * we) / (wa + wb + wc + wd + we); } float scan(vec2 pos, float off, vec2 res) { float dst = dist(pos, res).y; return gauss(dst + off, hardscan); } vec3 tri(vec2 pos, vec2 res) { vec3 a = horz3(pos, -1.0, res); vec3 b = horz5(pos, +0.0, res); vec3 c = horz3(pos, +1.0, res); float wa = scan(pos, -1.0, res); float wb = scan(pos, +0.0, res); float wc = scan(pos, +1.0, res); return a * wa + b * wb + c * wc; } vec3 mask(vec2 pos) { pos.x += pos.y * 3.0; vec3 m = vec3(maskDark, maskDark, maskDark); pos.x = fract(pos.x / 6.0); if (pos.x < 0.333) { m.r = maskLight; } else if (pos.x < 0.666) { m.g = maskLight; } else { m.b = maskLight; } return m; } float bar(float pos, float bar) { pos -= bar; return pos * pos < 4.0 ? 0.0 : 1.0; } float rand(vec2 uv, float t) { float seed = dot(uv, vec2(12.9898, 78.233)); return fract(sin(seed) * 43758.5453123 + t); } float gaussian(float z, float u, float o) { return ( (1.0 / (o * sqrt(TAU))) * (exp(-(((z - u) * (z - u)) / (2.0 * (o * o))))) ); } vec3 gaussgrain(float t) { vec2 ps = vec2(1.0) / resolution.xy; vec2 uv = gl_FragCoord.xy * ps; float noise = rand(uv, t); noise = gaussian(noise, 0.0, 0.5); return vec3(noise); } void drawVig(inout vec3 color, vec2 uv) { float vignette = uv.x * uv.y * (1.0 - uv.x) * (1.0 - uv.y); vignette = clamp(pow(abs(16.0 * vignette), 0.1), 0.0, 1.0); color = mix(color, color * vignette, 0.7); } void main(void) { vec2 res = vec2(1024.0, 768.0); vec2 uv = gl_FragCoord.xy / resolution.xy; float vig = (0.0 + 1.0 * 21.0 * uv.x * uv.y * (1.0 - uv.x) * (1.0 - uv.y)); float v = exp(-0.01 * length(uv)) * vig; float frameScale = 29.97; float frameTime = floor(time * frameScale) / frameScale; vec3 grainA = gaussgrain(frameTime * 1.0); vec3 grainB = gaussgrain(frameTime * 1.3); vec3 g = grainA * grainB * 0.15; float s = clamp(0.35 + 0.35 * sin(3.0 * time + uv.y * res.y * 3.0), 0.0, 1.0); float scanLines = pow(s, 1.33); vec4 color = vec4(tri(uv, res) * mask(gl_FragCoord.xy), 1.0); color.xyz = toSRGB(color.xyz * 2.0) - g; color = mix(color, color * v, 0.7); drawVig(color.xyz, uv); color = mix(color, color - s, 0.125); fragColor = color; }
#version 300 es // ╔═════════════╦════════════════╗ // ║ Marco Gomez ║ https://mgz.me ║ // ╚═════════════╩════════════════╝ precision highp float; // mandatory declaration for the audio buffer generation // it will determine the audio size in seconds. #define duration 187 // duration of the song in seconds // you can also use it in your main function, as I did in // this example, to have a nice time-based fadeOut effect =) // Sound methods addapted from the beautiful work of // SUGIMOTO Yoshiaki - https://twitter.com/catzpaw uniform vec2 resolution; uniform float sampleRate; uniform float blockOffset; out vec2 fragColor; const float PI = acos(-1.0); const float TAU = PI * 2.0; const float base = 440.0; const float bpm = 100.0; const float steps = 480.0; const float start = 2.0; const vec4 envelope1 = vec4(0.10, 0.4, 0.50, 0.50); #define masterDrive 0.5 #define masterPressure 1.0 #define delayRepeat 9 #define delayWet 0.7 #define delayFeedback 0.85 #define delayTime 0.05 float gtime = 0.0; float gdyn = 1.0; vec2 amp(vec2 i, vec3 p) { vec2 v = pow(abs(i * p.x), vec2(1.0 / p.y)); return clamp(sign(i) * v, -1.0, 1.0) * p.z; } float freq(float n) { return pow(2.0, (n - 69.0) / 12.0) * base * TAU; } float oscSine(float x, float v) { return clamp(sin(x) * v, -1.0, 1.0); } float oscNoise(float x, float v) { x = floor(x * 1e3 / v) * 1e-3; return fract(sin(x * 1717.17) * 1212.12) * 2.0 - 1.0; } float envAD(float x, float a, float d) { return min(x / max(a, 1e-4), max(0.0, 1.0 - (x - a) / max(d, 1e-4))); } float envelopeADSR(float x, vec4 e, float g) { return max( 0.0, min(1.0, x / max(e.x, 1e-4)) - min(1.0 - e.z, max(x - e.x, 0.0) * (1.0 - e.z) / max(e.y, 1e-4)) - max(x - g, 0.0) * e.z / max(e.w, 1e-4) ); } float hash(float n) { return fract(sin(n) * 43758.5453123); } vec2 hash2(vec2 p) { return vec2(hash(p.x), hash(p.y)); } vec2 noise(vec2 x) { vec2 p = floor(x); vec2 f = fract(x); f = f * f * (3.0 - 2.0 * f); vec2 res = mix( mix(hash2(p + 0.0), hash2(p + vec2(1.0, 0.0)), f.x), mix(hash2(p + vec2(0.0, 1.0)), hash2(p + vec2(1.0, 1.0)), f.x), f.y ); return res - 0.5; } vec2 fbm(vec2 p) { vec2 f; f = 0.50000 * noise(p); p = p * 2.32; f += 0.25000 * noise(p); p = p * 2.23; f += 0.12500 * noise(p); p = p * 2.31; f += 0.06250 * noise(p); p = p * 2.28; f += 0.03125 * noise(p); return f; } vec2 wind(float n) { vec2 pos = vec2(n * (162.017331), n * (132.066927)); vec2 vol = noise(vec2(n * 23.131, -n * 42.13254)) * 1.0 + 1.0; vec2 noise = vec2(fbm(pos * 33.313)) * vol.x * 0.5 + vec2(fbm(pos * 4.519)) * vol.y; return noise; } float instrument(float f, float x) { return ( oscSine( f * 0.5 * smoothstep(0.0, 0.02, x) + oscSine(f, 0.5) + oscSine(f * 2.0, 0.5) + oscNoise(x, 0.2) * envAD(x, 0.04, 0.45) * 0.4, 1.0 ) ); } float pral(float x) { float y = 20.0 / bpm; return ((x > y / 2.0) && (x < y)) ? +2.0 : 0.0; } float mord(float x) { float y = 20.0 / bpm; return ((x > y / 2.0) && (x < y)) ? -2.0 : 0.0; } #define P(l,s) float x = 1e3, y = 15.0 * float(l) / bpm, z = 0.0, v = mod(t, y * float(s)); #define N(s,n) if (v > float(s) * y) { x = v - float(s) * y; z = float(n); } #define NN(s,n) if (v > float(s) * y) { z = float(n); } #define NP(s,n) if (v > float(s) * y) { x = v - float(s) * y; z = float(n) + pral(x); } #define NM(s,n) if (v > float(s) * y) { x = v - float(s) * y; z = float(n) + mord(x); } #define R -1e3 #define D 62.0 #define E 64.0 #define G 67.0 #define A 69.0 #define B 71.0 #define LO -12.0 + #define dynMF gdyn = 0.7; vec2 sh(float x, float n) { n += sin(x * 24.0) * min(max(0.0, x - 0.5), 0.01) + 12.0; float fl = freq(n) * x; float fr = fl * 1.0043; fl *= 0.9957; return vec2( instrument(fl, x) * envelopeADSR(x, envelope1, 2.5), instrument(fr, x) * envelopeADSR(x, envelope1, 2.3)) * gdyn; } #define posret (z < 0.0) ? vec2(0.0) : sh(x, z + o) * 0.5 vec2 sh1(float t, float o) { P(2, 16); N(15, D); return posret; } vec2 sh2(float t, float o) { P(2, 16); N(0, E); N(8, G); N(10.9, E); NN(11.5, D); NN(12, LO B); N(14, LO A); return posret; } vec2 sh3(float t, float o) { P(2, 16); NM(0, LO B); N(14, R); return posret; } vec2 sh4(float t, float o) { P(2, 16); N(0, LO E); N(10.25, R); N(12, D); NN(13, E); NN(14, G); NN(15, A); return posret; } vec2 sh5(float t, float o) { P(2, 16); N(0, B); N(7.25, A); NN(8, B); N(15.75, R); return posret; } vec2 sh6(float t, float o) { P(2,16); N(4,E); NP(7,D); NN(8,LO B); N(15,LO A); return posret; } vec2 sh7(float t, float o) { P(2, 16); N(0, LO B); N(10, R); N(12, LO E); N(14, E); return posret; } vec2 sh8(float t, float o) { P(2, 16); N(0, E); N(12, G); NN(14, E); NN(15, D); return posret; } vec2 sh9(float t, float o) { P(2, 16); NM(0, E); N(12, R); return posret; } #define TRACK t = time; v = vec2(0.0); #define SEGNO(block, blocks) if (t > float(block) * l) { t = mod(t - float(block) * l, float(blocks) * l); #define SEQ(block, patterns) if (t > float(block) * l) { v = patterns; v *= d * smoothstep(0.0, 0.2, v); } #define DS } #define END o += v; void sequence(float time, float l, float d, inout vec2 o) { vec2 v = vec2(0.0); float t = time; dynMF; TRACK; SEGNO(0, 10); SEQ(1, sh1(t, 12.0)); SEQ(2, sh2(t, 12.0)); SEQ(3, sh3(t, 12.0)); SEQ(4, sh4(t, 12.0)); SEQ(5, sh5(t, 12.0)); SEQ(6, sh6(t, 12.0)); SEQ(7, sh7(t, 12.0)); SEQ(8, sh8(t, 12.0)); SEQ(9, sh9(t, 12.0)); DS END; } float osc(float s, float e, float t, float ts) { return (e - s) / 2.0 + s + sin(t * ts) * (e - s) * 0.5; } vec2 mainSound(float time) { float t = time; float stp = steps / bpm; float vol = 1.0; float dw = delayWet; float dt = delayTime; vec2 o = vec2(0.0); time -= start * 60.0 / bpm; if (time < 0.0) { return o; } gtime = time; sequence(time, stp, 1.0, o); for (int i = 0; i < delayRepeat; i++) { time -= dt; gtime -= dt; sequence(time, stp, dw, o); dw *= delayFeedback; dt += delayTime; } o += wind(time * 0.04) * osc(0.6, 0.9, t, 0.25); return amp(o, vec3(masterDrive, masterPressure, vol)); } void main(void) { vec2 coord = floor(gl_FragCoord.xy); float time = blockOffset + (coord.x + coord.y * resolution.x) / sampleRate; float d = float(duration); float fadeIn = smoothstep(0.0, 4.0, time); float fadeOut = clamp(abs(max(d - (2.0 * 2.125), min(d, time)) - d), 0.0, 1.0); fragColor = mainSound(time) * fadeIn * fadeOut; }
xxxxxxxxxx
// ╔═════════════╦════════════════╗
// ║ Marco Gomez ║ https://mgz.me ║
// ╚═════════════╩════════════════╝
precision highp float;
// Cubemap declared on PRGM1
// you can find some nice HDRIs at https://polyhaven.com/hdris
// you can convert HDRI to Cubemap with https://matheowis.github.io/HDRI-to-CubeMap/
uniform sampler2D prgm2Texture;
uniform sampler2D prgm6Texture;
uniform vec2 resolution;
uniform vec2 mouselerp;
uniform float time;
out vec4 fragColor;
const float PI = acos(-1.0);
const float TAU = PI * 2.0;
float osc(float s, float e, float t, float ts) {
return (e - s) / 2.0 + s + sin(t * ts) * (e - s) * 0.5;
}
vec2 warp(vec2 uv, vec2 warpAmount) {
uv = uv * 2.0 - 1.0;
vec2 offset = abs(uv.yx) / vec2(warpAmount.x, warpAmount.y);
uv = uv + uv * offset * offset;
uv = uv * 0.5 + 0.5;
return uv;
}
float gaussian(float z, float u, float o) {
return (
(1.0 / (o * sqrt(TAU))) *
(exp(-(((z - u) * (z - u)) / (2.0 * (o * o)))))
);
}
vec3 gaussgrain(float t) {
vec2 ps = vec2(1.0) / resolution.xy;
vec2 uv = gl_FragCoord.xy * ps;
float seed = dot(uv, vec2(12.9898, 78.233));
float noise = fract(sin(seed) * 43758.5453123 + t);
noise = gaussian(noise, 0.0, 0.5);
return vec3(noise);
}
void main(void) {
vec2 uv = gl_FragCoord.xy / resolution.xy;
vec4 prgm2 = texture(prgm2Texture, uv);
vec4 prgm6 = texture(prgm6Texture, uv);
float frameScale = 29.97;
float frameTime = floor(time * frameScale) / frameScale;
vec3 grainA = gaussgrain(frameTime * 1.0);
vec3 grainB = gaussgrain(frameTime * 1.3);
float m = clamp(1.0 - length(uv - 0.5), 0.0, 1.0);
fragColor = mix(prgm2, prgm6, m * 0.7);
fragColor.xyz += grainA * grainB * 0.1;
fragColor.a = 1.0;
}
95 fps 17ms
00:00:00.36
0.00