#version 300 es
// ╔═════════════╦════════════════╗
// ║ Marco Gomez ║ https://mgz.me ║
// ╚═════════════╩════════════════╝
precision highp float;
// Cubemap declared on PRGM1
// you can find some nice HDRIs at https://polyhaven.com/hdris
// you can convert HDRI to Cubemap with https://matheowis.github.io/HDRI-to-CubeMap/
uniform sampler2D prgm2Texture;
uniform sampler2D prgm6Texture;
uniform vec2 resolution;
uniform vec2 mouselerp;
uniform float time;
out vec4 fragColor;
const float PI = acos(-1.0);
const float TAU = PI * 2.0;
float osc(float s, float e, float t, float ts) {
return (e - s) / 2.0 + s + sin(t * ts) * (e - s) * 0.5;
}
vec2 warp(vec2 uv, vec2 warpAmount) {
uv = uv * 2.0 - 1.0;
vec2 offset = abs(uv.yx) / vec2(warpAmount.x, warpAmount.y);
uv = uv + uv * offset * offset;
uv = uv * 0.5 + 0.5;
return uv;
}
float gaussian(float z, float u, float o) {
return (
(1.0 / (o * sqrt(TAU))) *
(exp(-(((z - u) * (z - u)) / (2.0 * (o * o)))))
);
}
vec3 gaussgrain(float t) {
vec2 ps = vec2(1.0) / resolution.xy;
vec2 uv = gl_FragCoord.xy * ps;
float seed = dot(uv, vec2(12.9898, 78.233));
float noise = fract(sin(seed) * 43758.5453123 + t);
noise = gaussian(noise, 0.0, 0.5);
return vec3(noise);
}
void main(void) {
vec2 uv = gl_FragCoord.xy / resolution.xy;
vec4 prgm2 = texture(prgm2Texture, uv);
vec4 prgm6 = texture(prgm6Texture, uv);
float frameScale = 29.97;
float frameTime = floor(time * frameScale) / frameScale;
vec3 grainA = gaussgrain(frameTime * 1.0);
vec3 grainB = gaussgrain(frameTime * 1.3);
float m = clamp(1.0 - length(uv - 0.5), 0.0, 1.0);
fragColor = mix(prgm2, prgm6, m * 0.7);
fragColor.xyz += grainA * grainB * 0.1;
fragColor.a = 1.0;
}
#version 300 es
// ╔═════════════╦════════════════╗
// ║ Marco Gomez ║ https://mgz.me ║
// ╚═════════════╩════════════════╝
precision highp float;
// This is a demo of my initial implementation of samplerCube uniforms for XYZ
// you can find some nice HDRIs at https://polyhaven.com/hdris
// you can convert HDRI to Cubemap with https://matheowis.github.io/HDRI-to-CubeMap/
uniform sampler2D cubemapTexture0PX; // https://i.imgur.com/95JX8bl.png
uniform sampler2D cubemapTexture0NX; // https://i.imgur.com/Dr7yhmD.png
uniform sampler2D cubemapTexture0PY; // https://i.imgur.com/OvMX9n3.png
uniform sampler2D cubemapTexture0NY; // https://i.imgur.com/BDlj5mI.png
uniform sampler2D cubemapTexture0PZ; // https://i.imgur.com/d7fMPcO.png
uniform sampler2D cubemapTexture0NZ; // https://i.imgur.com/iDyUMaf.png
uniform samplerCube cubemap0;
uniform vec2 resolution;
uniform vec2 mouselerp;
uniform vec2 mouse;
uniform float time;
uniform float fft;
out vec4 fragColor;
const int maxSteps = 128;
const float maxDistance = 10.0;
const float surfaceDistance = 0.001;
const float PI = acos(-1.0);
const float TAU = PI * 2.0;
float acc;
mat2 rotate(float a) {
float s = sin(a);
float c = cos(a);
return mat2(c, -s, s, c);
}
float osc(float s, float e, float t, float ts) {
return (e - s) / 2.0 + s + sin(t * ts) * (e - s) * 0.5;
}
vec3 disturb(vec3 s, vec3 a) {
float minRes = min (resolution.x, resolution.y);
vec2 fc = gl_FragCoord.xy / minRes;
float wt = time * 2.0;
vec2 distortOffset = vec2(sin(wt + fc.y * TAU), sin(wt + fc.x * TAU)) * vec2(0.5);
a.xy += distortOffset;
vec3 disturbed = vec3(
s.x * 1.0 +
0.03 * sin(3.0 * time + fft + a.x * 5.0 - fft * 5.0) +
0.02 * sin(2.0 * time + fft + a.y * 4.0 + fft * 4.0) +
0.01 * sin(1.0 * time + fft + a.z * 3.0 + fft * 3.0),
s.y * 1.0 +
0.04 * sin(4.0 * time + fft + a.x * 4.0 + fft * 4.0) +
0.03 * sin(3.0 * time + fft + a.y * 3.0 - fft * 3.0) +
0.02 * sin(2.0 * time + fft + a.z * 2.0 + fft * 2.0),
s.z * 1.0 +
0.05 * sin(2.0 * time + a.x * 3.0 + fft * 3.0) +
0.04 * sin(1.0 * time + a.y * 2.0 + fft * 2.0) +
0.03 * sin(3.0 * time + a.z * 1.0 + fft - 1.0)
);
return disturbed;
}
float getDist(vec3 p) {
float yOff = abs(sin(2.0 * PI * osc(0.0, 0.3, time, 1.0))) * 0.5;
p.y += -0.3 + yOff;
p.xz *= rotate(-time * 0.25 - mouselerp.x * PI * 0.35);
float c = cos(PI / 5.0);
float s = sqrt(0.75 - c * c);
vec3 n = vec3(-0.5, -c, s);
p = mix(disturb(p, p), p, 0.25);
p = abs(p);
p -= 2.0 * min(0.0, dot(p, n)) * n; p.xy = abs(p.xy);
p -= 2.0 * min(0.0, dot(p, n)) * n; p.xy = abs(p.xy);
p -= 2.0 * min(0.0, dot(p, n)) * n;
float dist = p.z - 1.0 - fft * 0.3;
return dist;
}
float rayMarch(vec3 ro, vec3 rd, float side) {
float dist = 0.0;
for (int i = 0; i < maxSteps; i++) {
vec3 p = ro + rd * dist;
float distSide = getDist(p) * side;
dist += distSide;
if (dist > maxDistance || abs(distSide) < surfaceDistance) { break; }
}
return dist;
}
vec3 getNormal(vec3 p) {
float d = getDist(p);
vec2 closeSample = vec2(0.05, 0.0);
vec3 closeSampleV3 = vec3(
getDist(p - closeSample.xyy),
getDist(p - closeSample.yxy),
getDist(p - closeSample.yyx)
);
vec3 normal = d - closeSampleV3;
return normalize(normal);
}
vec3 getRayDir(vec2 uv, vec3 p, vec3 l, float z) {
vec3 f = normalize(l - p);
vec3 r = normalize(cross(vec3(0.0, 1.0, osc(-0.02, 0.02, time, 0.25)), f));
vec3 u = cross(f, r);
vec3 c = f * z;
vec3 i = c + uv.x * r + uv.y * u;
vec3 dir = normalize(i);
return dir;
}
void main(void) {
vec2 uv = (gl_FragCoord.xy - 0.5 * resolution.xy) / resolution.y;
vec2 mousePos = vec2(mouselerp.x, (mouselerp.y + 0.25) * 0.25);
vec3 ro = vec3(0.0, 1.0, -5.0) * 0.7;
bool isMouseOut = length(mouse) > 2.0;
if (isMouseOut) { acc += time * 0.125; }
ro.yz *= rotate((-mousePos.y * PI));
ro.xz *= rotate((-mousePos.x * TAU) - acc);
vec3 rd = getRayDir(uv, ro, vec3(0.0), 0.6);
vec3 col = texture(cubemap0, rd).rgb;
float d = rayMarch(ro, rd, 1.0);
float refractionIdx = 1.45;
if (d < maxDistance) {
vec3 p = ro + rd * d;
vec3 n = getNormal(p);
vec3 r = reflect(rd, n);
vec3 refOutside = texture(cubemap0, r).rgb;
vec3 rdIn = refract(rd, n, 1.0 / refractionIdx);
vec3 pEnter = p - n * surfaceDistance * 3.0;
float dIn = rayMarch(pEnter, rdIn, -1.0);
vec3 pExit = pEnter + rdIn * dIn;
vec3 nExit = -getNormal(pExit);
vec3 reflTex = vec3(0.0);
vec3 rdOut = vec3(0.0);
float abb = 0.01;
rdOut = refract(rdIn, nExit, refractionIdx - abb);
if (dot(rdOut, rdOut) == 0.0) { rdOut = reflect(rdIn, nExit); }
reflTex.r = texture(cubemap0, rdOut).r;
rdOut = refract(rdIn, nExit, refractionIdx);
if (dot(rdOut, rdOut) == 0.0) { rdOut = reflect(rdIn, nExit); }
reflTex.g = texture(cubemap0, rdOut).g;
rdOut = refract(rdIn, nExit, refractionIdx + abb);
if (dot(rdOut, rdOut) == 0.0) { rdOut = reflect(rdIn, nExit); }
reflTex.b = texture(cubemap0, rdOut).b;
float dens = 0.2;
float optDist = exp(-dIn * dens);
reflTex = reflTex * optDist;
float fresnel = pow(1.0 + dot(rd, n), 5.0);
col = mix(reflTex, refOutside, fresnel);
col = mix(col, (col * n * 2.0 * refOutside / (reflTex + 1e-4)) * 0.5 + 0.5, 0.07);
}
fragColor = clamp(vec4(col, 1.0), 0.0, 1.0);
}
#version 300 es
// ╔═════════════╦════════════════╗
// ║ Marco Gomez ║ https://mgz.me ║
// ╚═════════════╩════════════════╝
precision highp float;
uniform sampler2D prgm1Texture;
uniform sampler2D prgm2Texture;
uniform vec2 resolution;
uniform float time;
#define inputTexture prgm1Texture
#define inoutTexture prgm2Texture
out vec4 fragColor;
vec3 encodePalYuv(vec3 rgb) {
rgb = pow(rgb, vec3(2.0));
return vec3(
dot(rgb, vec3(0.299, 0.587, 0.114)),
dot(rgb, vec3(-0.14713, -0.28886, 0.436)),
dot(rgb, vec3(0.615, -0.51499, -0.10001))
);
}
vec3 decodePalYuv(vec3 yuv) {
vec3 rgb = vec3(
dot(yuv, vec3(1., 0., 1.13983)),
dot(yuv, vec3(1., -0.39465, -0.58060)),
dot(yuv, vec3(1., 2.03211, 0.))
);
return pow(rgb, vec3(1.0 / 2.0));
}
void main(void) {
vec2 uv = gl_FragCoord.xy / resolution.xy;
vec4 lastColor = texture(inoutTexture, uv);
vec3 antialiased = lastColor.xyz;
float mixRate = clamp(lastColor.w, 0.01, 0.5);
vec2 off = 1.0 / resolution.xy;
vec3 in0 = texture(inputTexture, uv).xyz;
antialiased = mix(antialiased * antialiased, in0 * in0, mixRate);
antialiased = sqrt(antialiased);
vec3 in1 = texture(inputTexture, uv + vec2(+off.x, 0.0)).xyz;
vec3 in2 = texture(inputTexture, uv + vec2(-off.x, 0.0)).xyz;
vec3 in3 = texture(inputTexture, uv + vec2(0.0, +off.y)).xyz;
vec3 in4 = texture(inputTexture, uv + vec2(0.0, -off.y)).xyz;
vec3 in5 = texture(inputTexture, uv + vec2(+off.x, +off.y)).xyz;
vec3 in6 = texture(inputTexture, uv + vec2(-off.x, +off.y)).xyz;
vec3 in7 = texture(inputTexture, uv + vec2(+off.x, -off.y)).xyz;
vec3 in8 = texture(inputTexture, uv + vec2(-off.x, -off.y)).xyz;
in0 = encodePalYuv(in0);
in1 = encodePalYuv(in1);
in2 = encodePalYuv(in2);
in3 = encodePalYuv(in3);
in4 = encodePalYuv(in4);
in5 = encodePalYuv(in5);
in6 = encodePalYuv(in6);
in7 = encodePalYuv(in7);
in8 = encodePalYuv(in8);
vec3 minColor = min(min(min(in0, in1), min(in2, in3)), in4);
vec3 maxColor = max(max(max(in0, in1), max(in2, in3)), in4);
minColor = mix(
minColor,
min(min(min(in5, in6), min(in7, in8)), minColor),
0.5
);
maxColor = mix(
maxColor,
max(max(max(in5, in6), max(in7, in8)), maxColor),
0.5
);
vec3 preclamping = antialiased;
antialiased = clamp(antialiased, minColor, maxColor);
mixRate = 1.0 / (1.0 / mixRate + 1.0);
vec3 diff = antialiased - preclamping;
float clampAmount = dot(diff, diff);
mixRate += clampAmount * 4.0;
mixRate = clamp(mixRate, 0.05, 0.5);
antialiased = decodePalYuv(antialiased);
fragColor = vec4(antialiased, mixRate);
}
#version 300 es
// ╔═════════════╦════════════════╗
// ║ Marco Gomez ║ https://mgz.me ║
// ╚═════════════╩════════════════╝
precision highp float;
uniform sampler2D prgm2Texture;
uniform vec2 resolution;
uniform float time;
#define inputTexture prgm2Texture
out vec4 fragColor;
vec3 texSample(const int x, const int y, vec2 fragCoord) {
vec2 uv = gl_FragCoord.xy / resolution.xy * resolution.xy;
uv = (uv + vec2(x, y)) / resolution.xy;
return texture(inputTexture, uv).xyz;
}
vec3 sharpenFilter(vec2 fragCoord, float strength) {
vec3 f = (
texSample(-1, -1, fragCoord) * -1.0 +
texSample(+1, -1, fragCoord) * -1.0 +
texSample(+0, +0, fragCoord) * +5.0 +
texSample(-1, +1, fragCoord) * -1.0 +
texSample(+1, +1, fragCoord) * -1.0
);
return mix(texSample( 0, 0, fragCoord), f , strength);
}
void main(void) {
vec2 uv = gl_FragCoord.xy / resolution.xy;
fragColor = vec4(sharpenFilter(gl_FragCoord.xy, 0.35), 1.0);
}
#version 300 es
// ╔═════════════╦════════════════╗
// ║ Marco Gomez ║ https://mgz.me ║
// ╚═════════════╩════════════════╝
precision highp float;
uniform sampler2D prgm3Texture;
uniform vec2 resolution;
uniform float time;
#define inputTexture prgm3Texture
out vec4 fragColor;
#define FXAA 1
#ifndef FXAA_PRESET
#define FXAA_PRESET 5
#define FXAA_DEBUG_SKIPPED 0
#define FXAA_DEBUG_PASSTHROUGH 0
#define FXAA_DEBUG_HORZVERT 0
#define FXAA_DEBUG_PAIR 0
#define FXAA_DEBUG_NEGPOS 0
#define FXAA_DEBUG_OFFSET 0
#define FXAA_DEBUG_HIGHLIGHT 0
#define FXAA_LUMINANCE 1
#endif
#if (FXAA_PRESET == 0)
#define FXAA_EDGE_THRESHOLD (1.0 / 4.0)
#define FXAA_EDGE_THRESHOLD_MIN (1.0 / 12.0)
#define FXAA_SEARCH_STEPS 2
#define FXAA_SEARCH_ACCELERATION 4
#define FXAA_SEARCH_THRESHOLD (1.0 / 4.0)
#define FXAA_SUBPIX 1
#define FXAA_SUBPIX_FASTER 1
#define FXAA_SUBPIX_CAP (2.0 / 3.0)
#define FXAA_SUBPIX_TRIM (1.0 / 4.0)
#endif
#if (FXAA_PRESET == 1)
#define FXAA_EDGE_THRESHOLD (1.0 / 8.0)
#define FXAA_EDGE_THRESHOLD_MIN (1.0 / 16.0)
#define FXAA_SEARCH_STEPS 4
#define FXAA_SEARCH_ACCELERATION 3
#define FXAA_SEARCH_THRESHOLD (1.0 / 4.0)
#define FXAA_SUBPIX 1
#define FXAA_SUBPIX_FASTER 0
#define FXAA_SUBPIX_CAP (3.0 / 4.0)
#define FXAA_SUBPIX_TRIM (1.0 / 4.0)
#endif
#if (FXAA_PRESET == 2)
#define FXAA_EDGE_THRESHOLD (1.0 / 8.0)
#define FXAA_EDGE_THRESHOLD_MIN (1.0 / 24.0)
#define FXAA_SEARCH_STEPS 8
#define FXAA_SEARCH_ACCELERATION 2
#define FXAA_SEARCH_THRESHOLD (1.0 / 4.0)
#define FXAA_SUBPIX 1
#define FXAA_SUBPIX_FASTER 0
#define FXAA_SUBPIX_CAP (3.0 / 4.0)
#define FXAA_SUBPIX_TRIM (1.0 / 4.0)
#endif
#if (FXAA_PRESET == 3)
#define FXAA_EDGE_THRESHOLD (1.0 / 8.0)
#define FXAA_EDGE_THRESHOLD_MIN (1.0 / 24.0)
#define FXAA_SEARCH_STEPS 16
#define FXAA_SEARCH_ACCELERATION 1
#define FXAA_SEARCH_THRESHOLD (1.0 / 4.0)
#define FXAA_SUBPIX 1
#define FXAA_SUBPIX_FASTER 0
#define FXAA_SUBPIX_CAP (3.0 / 4.0)
#define FXAA_SUBPIX_TRIM (1.0 / 4.0)
#endif
#if (FXAA_PRESET == 4)
#define FXAA_EDGE_THRESHOLD (1.0 / 8.0)
#define FXAA_EDGE_THRESHOLD_MIN (1.0 / 24.0)
#define FXAA_SEARCH_STEPS 24
#define FXAA_SEARCH_ACCELERATION 1
#define FXAA_SEARCH_THRESHOLD (1.0 / 4.0)
#define FXAA_SUBPIX 1
#define FXAA_SUBPIX_FASTER 0
#define FXAA_SUBPIX_CAP (3.0 / 4.0)
#define FXAA_SUBPIX_TRIM (1.0 / 4.0)
#endif
#if (FXAA_PRESET == 5)
#define FXAA_EDGE_THRESHOLD (1.0 / 8.0)
#define FXAA_EDGE_THRESHOLD_MIN (1.0 / 24.0)
#define FXAA_SEARCH_STEPS 32
#define FXAA_SEARCH_ACCELERATION 1
#define FXAA_SEARCH_THRESHOLD (1.0 / 4.0)
#define FXAA_SUBPIX 1
#define FXAA_SUBPIX_FASTER 0
#define FXAA_SUBPIX_CAP (3.0 / 4.0)
#define FXAA_SUBPIX_TRIM (1.0 / 4.0)
#endif
#if (FXAA_PRESET == 6)
#define FXAA_EDGE_THRESHOLD (1.0 / 8.0)
#define FXAA_EDGE_THRESHOLD_MIN (1.0 / 24.0)
#define FXAA_SEARCH_STEPS 128
#define FXAA_SEARCH_ACCELERATION 1
#define FXAA_SEARCH_THRESHOLD (1.0 / 4.0)
#define FXAA_SUBPIX 1
#define FXAA_SUBPIX_FASTER 0
#define FXAA_SUBPIX_CAP (3.0 / 4.0)
#define FXAA_SUBPIX_TRIM (1.0 / 4.0)
#endif
#define FXAA_SUBPIX_TRIM_SCALE (1.0 / (1.0 - FXAA_SUBPIX_TRIM))
vec2 ToVec2(float value) { return vec2(value, value); }
vec3 ToVec3(float value) { return vec3(value, value, value); }
vec3 ToVec3(vec2 vector, float z) { return vec3(vector.x, vector.y, z); }
vec3 ToVec3(vec2 vector) { return ToVec3(vector, 0.0); }
vec4 ToVec4(vec2 vector, float z, float w) { return vec4(vector.x, vector.y, z, w); }
vec4 ToVec4(vec2 vector, float z) { return ToVec4(vector, z, 0.0); }
vec4 ToVec4(vec2 vector) { return ToVec4(vector, 0.0); }
vec4 ToVec4(vec3 vector, float w) { return vec4(vector.x, vector.y, vector.z, w); }
vec4 ToVec4(vec3 vector) { return ToVec4(vector, 0.0); }
vec4 ToVec4(float value, float w) { return vec4(value, value, value, w); }
vec4 ToVec4(float value) { return ToVec4(value, 0.0); }
vec4 TextureOffset(sampler2D tex, vec2 uv, vec2 offset) {
return texture(tex, uv + offset);
}
vec3 Grayscale(vec3 color, int index) {
int selectedChannel = clamp(index, 0, 2);
return ToVec3(color[selectedChannel]);
}
vec4 Grayscale(vec4 color, int index) {
int selectedChannel = clamp(index, 0, 3);
return ToVec4(color[selectedChannel]);
}
vec3 Grayscale(vec3 color) { return Grayscale(color, 1); }
vec4 Grayscale(vec4 color) { return Grayscale(color, 1); }
float LinearRGBLuminance(vec3 color) {
vec3 weight = vec3(0.2126729, 0.7151522, 0.0721750);
return dot(color, weight);
}
float FXAALuminance(vec3 color) {
#if FXAA_LUMINANCE == 0
return LinearRGBLuminance(color);
#else
return color.g * (0.587 / 0.299) + color.r;
#endif
}
float FXAAVerticalEdge(float lumaO, float lumaN, float lumaE, float lumaS, float lumaW, float lumaNW, float lumaNE, float lumaSW, float lumaSE) {
float top = (0.25 * lumaNW) + (-0.5 * lumaN) + (0.25 * lumaNE);
float middle = (0.50 * lumaW ) + (-1.0 * lumaO) + (0.50 * lumaE );
float bottom = (0.25 * lumaSW) + (-0.5 * lumaS) + (0.25 * lumaSE);
return abs(top) + abs(middle) + abs(bottom);
}
float FXAAHorizontalEdge(float lumaO, float lumaN, float lumaE, float lumaS, float lumaW, float lumaNW, float lumaNE, float lumaSW, float lumaSE) {
float top = (0.25 * lumaNW) + (-0.5 * lumaW) + (0.25 * lumaSW);
float middle = (0.50 * lumaN ) + (-1.0 * lumaO) + (0.50 * lumaS);
float bottom = (0.25 * lumaNE) + (-0.5 * lumaE) + (0.25 * lumaSE);
return abs(top) + abs(middle) + abs(bottom);
}
vec3 applyFXAA(sampler2D textureSource, vec2 textureDimensions, vec2 pixelPosition, vec2 screenResolution) {
vec2 uv = pixelPosition / screenResolution;
vec2 texel = vec2(1.0, 1.0) / textureDimensions;
vec3 rgbN = TextureOffset(textureSource, uv, vec2(0, -texel.y)).rgb;
vec3 rgbW = TextureOffset(textureSource, uv, vec2(-texel.x, 0)).rgb;
vec3 rgbO = TextureOffset(textureSource, uv, vec2(0, 0)).rgb;
vec3 rgbE = TextureOffset(textureSource, uv, vec2(texel.x, 0)).rgb;
vec3 rgbS = TextureOffset(textureSource, uv, vec2(0, texel.y)).rgb;
#if FXAA == 0
return rgbO;
#endif
float lumaN = FXAALuminance(rgbN);
float lumaW = FXAALuminance(rgbW);
float lumaO = FXAALuminance(rgbO);
float lumaE = FXAALuminance(rgbE);
float lumaS = FXAALuminance(rgbS);
float minLuma = min(lumaO, min(min(lumaN, lumaW), min(lumaS, lumaE)));
float maxLuma = max(lumaO, max(max(lumaN, lumaW), max(lumaS, lumaE)));
float localContrast = maxLuma - minLuma;
if (localContrast < max(FXAA_EDGE_THRESHOLD_MIN, maxLuma * FXAA_EDGE_THRESHOLD)) {
#if FXAA_DEBUG_SKIPPED
return vec3(0);
#else
return rgbO;
#endif
}
#if FXAA_SUBPIX > 0
vec3 rgbL = (rgbN + rgbW + rgbO + rgbE + rgbS);
#if FXAA_SUBPIX_FASTER
rgbL *= (1.0 / 5.0);
#endif
float lumaL = (lumaN + lumaW + lumaS + lumaE) * 0.25;
float pixelContrast = abs(lumaL - lumaO);
float contrastRatio = pixelContrast / localContrast;
float lowpassBlend = 0.0;
#if FXAA_SUBPIX == 1
lowpassBlend = max(0.0, contrastRatio - FXAA_SUBPIX_TRIM) * FXAA_SUBPIX_TRIM_SCALE;
lowpassBlend = min(FXAA_SUBPIX_CAP, lowpassBlend);
#elif FXAA_SUBPIX == 2
lowpassBlend = contrastRatio;
#endif
#endif
#if FXAA_DEBUG_PASSTHROUGH
#if FXAA_SUBPIX > 0
return vec3(localContrast, lowpassBlend, 0.0);
#else
return vec3(localContrast, 0.0, 0.0);
#endif
#endif
vec3 rgbNW = TextureOffset(textureSource, uv, vec2(-texel.x, -texel.y)).rgb;
vec3 rgbNE = TextureOffset(textureSource, uv, vec2(texel.x, -texel.y)).rgb;
vec3 rgbSW = TextureOffset(textureSource, uv, vec2(-texel.x, texel.y)).rgb;
vec3 rgbSE = TextureOffset(textureSource, uv, vec2(texel.x, texel.y)).rgb;
#if FXAA_SUBPIX > 0
#if FXAA_SUBPIX_FASTER == 0
rgbL += (rgbNW + rgbNE + rgbSW + rgbSE);
rgbL *= (1.0 / 9.0);
#endif
#endif
float lumaNW = FXAALuminance(rgbNW);
float lumaNE = FXAALuminance(rgbNE);
float lumaSW = FXAALuminance(rgbSW);
float lumaSE = FXAALuminance(rgbSE);
float edgeVert = FXAAVerticalEdge(lumaO, lumaN, lumaE, lumaS, lumaW, lumaNW, lumaNE, lumaSW, lumaSE);
float edgeHori = FXAAHorizontalEdge(lumaO, lumaN, lumaE, lumaS, lumaW, lumaNW, lumaNE, lumaSW, lumaSE);
bool isHorizontal = edgeHori >= edgeVert;
#if FXAA_DEBUG_HORZVERT
if (isHorizontal) {
return vec3(1.0, 0.75, 0.0);
} else {
return vec3(0.10, 0.10, 1.0);
}
#endif
float edgeSign = isHorizontal ? -texel.y : -texel.x;
float gradientNeg = isHorizontal ? abs(lumaN - lumaO) : abs(lumaW - lumaO);
float gradientPos = isHorizontal ? abs(lumaS - lumaO) : abs(lumaE - lumaO);
float lumaNeg = isHorizontal ? ((lumaN + lumaO) * 0.5) : ((lumaW + lumaO) * 0.5);
float lumaPos = isHorizontal ? ((lumaS + lumaO) * 0.5) : ((lumaE + lumaO) * 0.5);
bool isNegative = (gradientNeg >= gradientPos);
float gradientHighest = isNegative ? gradientNeg : gradientPos;
float lumaHighest = isNegative ? lumaNeg : lumaPos;
if (isNegative) { edgeSign *= -1.0; }
#if FXAA_DEBUG_PAIR
return isHorizontal ? vec3(0.0, gradientHighest, lumaHighest) : vec3(0.0, lumaHighest, gradientHighest);
#endif
vec2 pointN = vec2(0.0, 0.0);
pointN.x = uv.x + (isHorizontal ? 0.0 : edgeSign * 0.5);
pointN.y = uv.y + (isHorizontal ? edgeSign * 0.5 : 0.0);
gradientHighest *= FXAA_SEARCH_THRESHOLD;
vec2 pointP = pointN;
vec2 pointOffset = isHorizontal ? vec2(texel.x, 0.0) : vec2(0.0, texel.y);
float lumaNegEnd = lumaNeg;
float lumaPosEnd = lumaPos;
bool searchNeg = false;
bool searchPos = false;
if (FXAA_SEARCH_ACCELERATION == 1) {
pointN += pointOffset * vec2(-1.0);
pointP += pointOffset * vec2(1.0);
} else if (FXAA_SEARCH_ACCELERATION == 2) {
pointN += pointOffset * vec2(-1.5);
pointP += pointOffset * vec2(1.5);
pointOffset *= vec2(2.0);
} else if (FXAA_SEARCH_ACCELERATION == 3) {
pointN += pointOffset * vec2(-2.0);
pointP += pointOffset * vec2(2.0);
pointOffset *= vec2(3.0);
} else if(FXAA_SEARCH_ACCELERATION == 4) {
pointN += pointOffset * vec2(-2.5);
pointP += pointOffset * vec2(2.5);
pointOffset *= vec2(4.0);
}
for (int i = 0; i < FXAA_SEARCH_STEPS; i++) {
if (FXAA_SEARCH_ACCELERATION == 1) {
if (!searchNeg) { lumaNegEnd = FXAALuminance(texture(textureSource, pointN).rgb); }
if (!searchPos) { lumaPosEnd = FXAALuminance(texture(textureSource, pointP).rgb); }
} else {
if (!searchNeg) { lumaNegEnd = FXAALuminance(textureGrad(textureSource, pointN, pointOffset, pointOffset).rgb); }
if (!searchPos) { lumaPosEnd = FXAALuminance(textureGrad(textureSource, pointP, pointOffset, pointOffset).rgb); }
}
searchNeg = searchNeg || (abs(lumaNegEnd - lumaHighest) >= gradientHighest);
searchPos = searchPos || (abs(lumaPosEnd - lumaHighest) >= gradientHighest);
#if FXAA_DEBUG_NEGPOS
if (searchNeg) {
return vec3(abs(lumaNegEnd - gradientNeg), 0.0, 0.0);
} else if (searchPos) {
return vec3(0.0, 0.0, abs(lumaPosEnd - gradientPos));
}
#endif
if (searchNeg && searchPos) { break; }
if (!searchNeg) { pointN -= pointOffset; }
if (!searchPos) { pointP += pointOffset; }
}
float distanceNeg = isHorizontal ? uv.x - pointN.x : uv.y - pointN.y;
float distancePos = isHorizontal ? pointP.x - uv.x : pointP.y - uv.y;
bool isCloserToNegative = distanceNeg < distancePos;
float lumaEnd = isCloserToNegative ? lumaNegEnd : lumaPosEnd;
if (((lumaO - lumaNeg) < 0.0) == ((lumaEnd - lumaNeg) < 0.0)) {
edgeSign = 0.0;
}
float filterSpanLength = (distancePos + distanceNeg);
float filterDistance = isCloserToNegative ? distanceNeg : distancePos;
float subpixelOffset = (0.5 + (filterDistance * (-1.0 / filterSpanLength))) * edgeSign;
#if FXAA_DEBUG_OFFSET
if (subpixelOffset < 0.0) {
return isHorizontal ? vec3(1.0, 0.0, 0.0) : vec3(1.0, 0.7, 0.1);
}
if (subpixelOffset > 0.0) {
return isHorizontal ? vec3(0.0, 0.0, 1.0) : vec3(0.1, 0.3, 1.0);
}
#endif
vec3 rgbOffset = textureLod(textureSource, vec2(uv.x + (isHorizontal ? 0.0 : subpixelOffset), uv.y + (isHorizontal ? subpixelOffset : 0.0)), 0.0).rgb;
#if FXAA_DEBUG_HIGHLIGHT
return isHorizontal ? vec3(1.0, 0.0, 0.0) : vec3(0.0, 1.0, 0.0);
#endif
#if FXAA_SUBPIX == 0
return vec3(rgbOffset);
#else
return mix(rgbOffset, rgbL, lowpassBlend);
#endif
}
void main(void) {
vec3 resultFXAA = applyFXAA(inputTexture, resolution.xy, gl_FragCoord.xy, resolution.xy);
fragColor = ToVec4(resultFXAA, 1.0);
}
#version 300 es
// ╔═════════════╦════════════════╗
// ║ Marco Gomez ║ https://mgz.me ║
// ╚═════════════╩════════════════╝
precision highp float;
uniform sampler2D prgm4Texture;
uniform vec2 resolution;
uniform float time;
out vec4 fragColor;
#define inputTexture prgm4Texture
const float amount = 1.0;
const float contrast = 1.3;
const float saturation = 0.7;
const float brightness = 2.5;
const float reinhardAmount = 1.0;
const float matrixAmount = 0.1;
const float gaussGrainAmount = 0.1;
const float frameTimeScale = 29.97;
const vec2 vignetteSize = vec2(0.25, 0.25);
const float vignetteRoundness = 0.12;
const float vignetteMix = 0.2;
const float vignetteSmoothness = 0.42;
const float W = 1.2;
const float T = 7.5;
const float PI = acos(-1.0);
const float TAU = PI * 2.0;
vec3 contrastSaturationBrightness(vec3 color, float brt, float sat, float con) {
const float AvgLumR = 0.5;
const float AvgLumG = 0.5;
const float AvgLumB = 0.5;
const vec3 LumCoeff = vec3(0.2125, 0.7154, 0.0721);
vec3 AvgLumin = vec3(AvgLumR, AvgLumG, AvgLumB);
vec3 brtColor = color * brt;
vec3 intensity = vec3(dot(brtColor, LumCoeff));
vec3 satColor = mix(intensity, brtColor, sat);
vec3 conColor = mix(AvgLumin, satColor, con);
return conColor;
}
float filmicReinhardCurve(float x) {
float q = (T * T + 1.0) * x * x;
return q / (q + x + T * T);
}
vec3 filmicReinhard(vec3 c) {
float w = filmicReinhardCurve(W);
return vec3(
filmicReinhardCurve(c.r),
filmicReinhardCurve(c.g),
filmicReinhardCurve(c.b)
) / w;
}
vec3 matrixTonemapping(vec3 color) {
return vec3(
pow(abs(color.r), (3.0 / 2.0)),
pow(abs(color.g), (4.0 / 5.0)),
pow(abs(color.b), (3.0 / 2.0))
);
}
float gaussian(float z, float u, float o) {
return (
(1.0 / (o * sqrt(TAU))) *
(exp(-(((z - u) * (z - u)) / (2.0 * (o * o)))))
);
}
vec3 gaussgrain(float t) {
vec2 ps = vec2(1.0) / resolution.xy;
vec2 uv = gl_FragCoord.xy * ps;
float seed = dot(uv, vec2(12.9898, 78.233));
float noise = fract(sin(seed) * 43758.5453123 + t);
noise = gaussian(noise, 0.0, 0.5);
return vec3(noise);
}
float sdSquare(vec2 point, float width) {
vec2 d = abs(point) - width;
return min(max(d.x, d.y), 0.0) + length(max(d, 0.0));
}
float vignette(vec2 uv, vec2 size, float roundness, float smoothness) {
uv -= 0.5;
float minWidth = min(size.x, size.y);
uv.x = sign(uv.x) * clamp(abs(uv.x) - abs(minWidth - size.x), 0.0, 1.0);
uv.y = sign(uv.y) * clamp(abs(uv.y) - abs(minWidth - size.y), 0.0, 1.0);
float boxSize = minWidth * (1.0 - roundness);
float dist = sdSquare(uv, boxSize) - (minWidth * roundness);
return 1.0 - smoothstep(0.0, smoothness, dist);
}
void main(void) {
vec2 uv = gl_FragCoord.xy / resolution.xy;
float frameTime = floor(time * frameTimeScale) / frameTimeScale;
vec3 grainA = gaussgrain(frameTime * 1.1);
vec3 grainB = gaussgrain(frameTime * 1.3);
vec3 grain = grainA * grainB * gaussGrainAmount;
vec4 tex = texture(inputTexture, uv);
vec3 color = tex.rgb;
vec3 reinhard = filmicReinhard(tex.rgb);
vec3 matrix = matrixTonemapping(tex.rgb);
color = mix(color, reinhard, reinhardAmount);
color = contrastSaturationBrightness(color, brightness, saturation, contrast);
color = mix(color, matrix, matrixAmount);
float v = vignette(uv, vignetteSize, vignetteRoundness, vignetteSmoothness);
vec3 vig = color * v;
color = mix(color, vig, vignetteMix);
color = mix(tex.xyz, color, amount);
color -= grain;
color = clamp(color, 0.0, 1.0);
fragColor = vec4(color, 1.0);
}
#version 300 es
// ╔═════════════╦════════════════╗
// ║ Marco Gomez ║ https://mgz.me ║
// ╚═════════════╩════════════════╝
precision highp float;
uniform sampler2D prgm5Texture;
uniform vec2 resolution;
uniform float time;
#define inputTexture prgm5Texture
out vec4 fragColor;
const float PI = acos(-1.0);
const float TAU = PI * 2.0;
const float hardscan = -8.0;
const float hardPix = -2.0;
const float maskDark = 0.5;
const float maskLight = 1.5;
float toLinear(float c) {
return (c <= 0.04045) ? c / 12.92 : pow(abs((c + 0.055) / 1.055), 2.4);
}
vec3 toLinear(vec3 c) {
return vec3(toLinear(c.r), toLinear(c.g), toLinear(c.b));
}
float toSRGB(float c) {
return(c < 0.0031308 ? c * 12.92 : 1.055 * pow(abs(c), 0.41666) - 0.055);
}
vec3 toSRGB(vec3 c) {
return vec3(toSRGB(c.r), toSRGB(c.g), toSRGB(c.b));
}
vec3 fetch(vec2 pos, vec2 off, vec2 res) {
pos = floor(pos * res + off) / res;
if (max(abs(pos.x - 0.5), abs(pos.y - 0.5)) > 0.5) {
return vec3(0.0);
}
return toLinear(texture(inputTexture, pos.xy, -16.0).xyz);
}
vec2 dist(vec2 pos, vec2 res) {
pos = pos * res;
return -((pos - floor(pos)) - vec2(0.5));
}
float gauss(float pos, float scale) {
return exp2(scale * pos * pos);
}
vec3 horz3(vec2 pos, float off, vec2 res) {
vec3 b = fetch(pos, vec2(-1.0, off), res);
vec3 c = fetch(pos, vec2(+0.0, off), res);
vec3 d = fetch(pos, vec2(+1.0, off), res);
float dst = dist(pos, res).x;
float scale = hardPix;
float wb = gauss(dst - 1.0, scale);
float wc = gauss(dst + 0.0, scale);
float wd = gauss(dst + 1.0, scale);
return (b * wb + c * wc + d * wd) / (wb + wc + wd);
}
vec3 horz5(vec2 pos, float off, vec2 res) {
vec3 a = fetch(pos, vec2(-2.0, off), res);
vec3 b = fetch(pos, vec2(-1.0, off), res);
vec3 c = fetch(pos, vec2(+0.0, off), res);
vec3 d = fetch(pos, vec2(+1.0, off), res);
vec3 e = fetch(pos, vec2(+2.0, off), res);
float dst = dist(pos, res).x;
float scale = hardPix;
float wa = gauss(dst - 2.0, scale);
float wb = gauss(dst - 1.0, scale);
float wc = gauss(dst + 0.0, scale);
float wd = gauss(dst + 1.0, scale);
float we = gauss(dst + 2.0, scale);
return (a * wa + b * wb + c * wc + d * wd + e * we) / (wa + wb + wc + wd + we);
}
float scan(vec2 pos, float off, vec2 res) {
float dst = dist(pos, res).y;
return gauss(dst + off, hardscan);
}
vec3 tri(vec2 pos, vec2 res) {
vec3 a = horz3(pos, -1.0, res);
vec3 b = horz5(pos, +0.0, res);
vec3 c = horz3(pos, +1.0, res);
float wa = scan(pos, -1.0, res);
float wb = scan(pos, +0.0, res);
float wc = scan(pos, +1.0, res);
return a * wa + b * wb + c * wc;
}
vec3 mask(vec2 pos) {
pos.x += pos.y * 3.0;
vec3 m = vec3(maskDark, maskDark, maskDark);
pos.x = fract(pos.x / 6.0);
if (pos.x < 0.333) {
m.r = maskLight;
} else if (pos.x < 0.666) {
m.g = maskLight;
} else {
m.b = maskLight;
}
return m;
}
float bar(float pos, float bar) {
pos -= bar;
return pos * pos < 4.0 ? 0.0 : 1.0;
}
float rand(vec2 uv, float t) {
float seed = dot(uv, vec2(12.9898, 78.233));
return fract(sin(seed) * 43758.5453123 + t);
}
float gaussian(float z, float u, float o) {
return (
(1.0 / (o * sqrt(TAU))) *
(exp(-(((z - u) * (z - u)) / (2.0 * (o * o)))))
);
}
vec3 gaussgrain(float t) {
vec2 ps = vec2(1.0) / resolution.xy;
vec2 uv = gl_FragCoord.xy * ps;
float noise = rand(uv, t);
noise = gaussian(noise, 0.0, 0.5);
return vec3(noise);
}
void drawVig(inout vec3 color, vec2 uv) {
float vignette = uv.x * uv.y * (1.0 - uv.x) * (1.0 - uv.y);
vignette = clamp(pow(abs(16.0 * vignette), 0.1), 0.0, 1.0);
color = mix(color, color * vignette, 0.7);
}
void main(void) {
vec2 res = vec2(1024.0, 768.0);
vec2 uv = gl_FragCoord.xy / resolution.xy;
float vig = (0.0 + 1.0 * 21.0 * uv.x * uv.y * (1.0 - uv.x) * (1.0 - uv.y));
float v = exp(-0.01 * length(uv)) * vig;
float frameScale = 29.97;
float frameTime = floor(time * frameScale) / frameScale;
vec3 grainA = gaussgrain(frameTime * 1.0);
vec3 grainB = gaussgrain(frameTime * 1.3);
vec3 g = grainA * grainB * 0.15;
float s = clamp(0.35 + 0.35 * sin(3.0 * time + uv.y * res.y * 3.0), 0.0, 1.0);
float scanLines = pow(s, 1.33);
vec4 color = vec4(tri(uv, res) * mask(gl_FragCoord.xy), 1.0);
color.xyz = toSRGB(color.xyz * 2.0) - g;
color = mix(color, color * v, 0.7);
drawVig(color.xyz, uv);
color = mix(color, color - s, 0.125);
fragColor = color;
}
#version 300 es
// ╔═════════════╦════════════════╗
// ║ Marco Gomez ║ https://mgz.me ║
// ╚═════════════╩════════════════╝
precision highp float;
// mandatory declaration for the audio buffer generation
// it will determine the audio size in seconds.
#define duration 187 // duration of the song in seconds
// you can also use it in your main function, as I did in
// this example, to have a nice time-based fadeOut effect =)
// Sound methods addapted from the beautiful work of
// SUGIMOTO Yoshiaki - https://twitter.com/catzpaw
uniform vec2 resolution;
uniform float sampleRate;
uniform float blockOffset;
out vec2 fragColor;
const float PI = acos(-1.0);
const float TAU = PI * 2.0;
const float base = 440.0;
const float bpm = 100.0;
const float steps = 480.0;
const float start = 2.0;
const vec4 envelope1 = vec4(0.10, 0.4, 0.50, 0.50);
#define masterDrive 0.5
#define masterPressure 1.0
#define delayRepeat 9
#define delayWet 0.7
#define delayFeedback 0.85
#define delayTime 0.05
float gtime = 0.0;
float gdyn = 1.0;
vec2 amp(vec2 i, vec3 p) {
vec2 v = pow(abs(i * p.x), vec2(1.0 / p.y));
return clamp(sign(i) * v, -1.0, 1.0) * p.z;
}
float freq(float n) {
return pow(2.0, (n - 69.0) / 12.0) * base * TAU;
}
float oscSine(float x, float v) {
return clamp(sin(x) * v, -1.0, 1.0);
}
float oscNoise(float x, float v) {
x = floor(x * 1e3 / v) * 1e-3;
return fract(sin(x * 1717.17) * 1212.12) * 2.0 - 1.0;
}
float envAD(float x, float a, float d) {
return min(x / max(a, 1e-4), max(0.0, 1.0 - (x - a) / max(d, 1e-4)));
}
float envelopeADSR(float x, vec4 e, float g) {
return max(
0.0,
min(1.0, x / max(e.x, 1e-4)) -
min(1.0 - e.z, max(x - e.x, 0.0) * (1.0 - e.z) / max(e.y, 1e-4)) -
max(x - g, 0.0) * e.z / max(e.w, 1e-4)
);
}
float hash(float n) {
return fract(sin(n) * 43758.5453123);
}
vec2 hash2(vec2 p) {
return vec2(hash(p.x), hash(p.y));
}
vec2 noise(vec2 x) {
vec2 p = floor(x);
vec2 f = fract(x);
f = f * f * (3.0 - 2.0 * f);
vec2 res = mix(
mix(hash2(p + 0.0), hash2(p + vec2(1.0, 0.0)), f.x),
mix(hash2(p + vec2(0.0, 1.0)), hash2(p + vec2(1.0, 1.0)), f.x),
f.y
);
return res - 0.5;
}
vec2 fbm(vec2 p) {
vec2 f;
f = 0.50000 * noise(p); p = p * 2.32;
f += 0.25000 * noise(p); p = p * 2.23;
f += 0.12500 * noise(p); p = p * 2.31;
f += 0.06250 * noise(p); p = p * 2.28;
f += 0.03125 * noise(p);
return f;
}
vec2 wind(float n) {
vec2 pos = vec2(n * (162.017331), n * (132.066927));
vec2 vol = noise(vec2(n * 23.131, -n * 42.13254)) * 1.0 + 1.0;
vec2 noise = vec2(fbm(pos * 33.313)) * vol.x * 0.5 + vec2(fbm(pos * 4.519)) * vol.y;
return noise;
}
float instrument(float f, float x) {
return (
oscSine(
f * 0.5 * smoothstep(0.0, 0.02, x) +
oscSine(f, 0.5) +
oscSine(f * 2.0, 0.5) +
oscNoise(x, 0.2) * envAD(x, 0.04, 0.45) * 0.4,
1.0
)
);
}
float pral(float x) { float y = 20.0 / bpm; return ((x > y / 2.0) && (x < y)) ? +2.0 : 0.0; }
float mord(float x) { float y = 20.0 / bpm; return ((x > y / 2.0) && (x < y)) ? -2.0 : 0.0; }
#define P(l,s) float x = 1e3, y = 15.0 * float(l) / bpm, z = 0.0, v = mod(t, y * float(s));
#define N(s,n) if (v > float(s) * y) { x = v - float(s) * y; z = float(n); }
#define NN(s,n) if (v > float(s) * y) { z = float(n); }
#define NP(s,n) if (v > float(s) * y) { x = v - float(s) * y; z = float(n) + pral(x); }
#define NM(s,n) if (v > float(s) * y) { x = v - float(s) * y; z = float(n) + mord(x); }
#define R -1e3
#define D 62.0
#define E 64.0
#define G 67.0
#define A 69.0
#define B 71.0
#define LO -12.0 +
#define dynMF gdyn = 0.7;
vec2 sh(float x, float n) {
n += sin(x * 24.0) * min(max(0.0, x - 0.5), 0.01) + 12.0;
float fl = freq(n) * x;
float fr = fl * 1.0043;
fl *= 0.9957;
return vec2(
instrument(fl, x) * envelopeADSR(x, envelope1, 2.5),
instrument(fr, x) * envelopeADSR(x, envelope1, 2.3)) * gdyn;
}
#define posret (z < 0.0) ? vec2(0.0) : sh(x, z + o) * 0.5
vec2 sh1(float t, float o) {
P(2, 16); N(15, D);
return posret;
}
vec2 sh2(float t, float o) {
P(2, 16); N(0, E); N(8, G); N(10.9, E); NN(11.5, D); NN(12, LO B); N(14, LO A);
return posret;
}
vec2 sh3(float t, float o) {
P(2, 16); NM(0, LO B); N(14, R);
return posret;
}
vec2 sh4(float t, float o) {
P(2, 16); N(0, LO E); N(10.25, R); N(12, D); NN(13, E); NN(14, G); NN(15, A);
return posret;
}
vec2 sh5(float t, float o) {
P(2, 16); N(0, B); N(7.25, A); NN(8, B); N(15.75, R);
return posret;
}
vec2 sh6(float t, float o) {
P(2,16); N(4,E); NP(7,D); NN(8,LO B); N(15,LO A);
return posret;
}
vec2 sh7(float t, float o) {
P(2, 16); N(0, LO B); N(10, R); N(12, LO E); N(14, E);
return posret;
}
vec2 sh8(float t, float o) {
P(2, 16); N(0, E); N(12, G); NN(14, E); NN(15, D);
return posret;
}
vec2 sh9(float t, float o) {
P(2, 16); NM(0, E); N(12, R);
return posret;
}
#define TRACK t = time; v = vec2(0.0);
#define SEGNO(block, blocks) if (t > float(block) * l) { t = mod(t - float(block) * l, float(blocks) * l);
#define SEQ(block, patterns) if (t > float(block) * l) { v = patterns; v *= d * smoothstep(0.0, 0.2, v); }
#define DS }
#define END o += v;
void sequence(float time, float l, float d, inout vec2 o) {
vec2 v = vec2(0.0);
float t = time;
dynMF;
TRACK;
SEGNO(0, 10);
SEQ(1, sh1(t, 12.0));
SEQ(2, sh2(t, 12.0));
SEQ(3, sh3(t, 12.0));
SEQ(4, sh4(t, 12.0));
SEQ(5, sh5(t, 12.0));
SEQ(6, sh6(t, 12.0));
SEQ(7, sh7(t, 12.0));
SEQ(8, sh8(t, 12.0));
SEQ(9, sh9(t, 12.0));
DS END;
}
float osc(float s, float e, float t, float ts) {
return (e - s) / 2.0 + s + sin(t * ts) * (e - s) * 0.5;
}
vec2 mainSound(float time) {
float t = time;
float stp = steps / bpm;
float vol = 1.0;
float dw = delayWet;
float dt = delayTime;
vec2 o = vec2(0.0);
time -= start * 60.0 / bpm;
if (time < 0.0) { return o; }
gtime = time;
sequence(time, stp, 1.0, o);
for (int i = 0; i < delayRepeat; i++) {
time -= dt;
gtime -= dt;
sequence(time, stp, dw, o);
dw *= delayFeedback;
dt += delayTime;
}
o += wind(time * 0.04) * osc(0.6, 0.9, t, 0.25);
return amp(o, vec3(masterDrive, masterPressure, vol));
}
void main(void) {
vec2 coord = floor(gl_FragCoord.xy);
float time = blockOffset + (coord.x + coord.y * resolution.x) / sampleRate;
float d = float(duration);
float fadeIn = smoothstep(0.0, 4.0, time);
float fadeOut = clamp(abs(max(d - (2.0 * 2.125), min(d, time)) - d), 0.0, 1.0);
fragColor = mainSound(time) * fadeIn * fadeOut;
}