A (less) Tiny Raymarcher

This is a tiny (but not so much anymore) ray marcher that I wrote to continue my studies on ray marching, this time exploring soft shadows and supersampling anti-aliasing.

Created by marcogomez on Sun, 31 Oct 2021 01:24:09 GMT.


#version 300 es
// ╔═════════════╦════════════════╗
// ║ Marco Gomez ║ https://mgz.me ║
// ╚═════════════╩════════════════╝
precision highp float;

uniform vec2 resolution;
uniform vec2 mouselerp;
uniform float time;

out vec4 fragColor;

#define marchSteps 128

const float PI = acos(-1.0);
const float TAU = PI * 2.0;

mat4 rotationMatrix(vec3 axis, float angle) {
  axis = normalize(axis);
  float s = sin(angle);
  float c = cos(angle);
  float oc = 1.0 - c;
  return mat4(
    oc * axis.x * axis.x + c,          oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0,
    oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c,          oc * axis.y * axis.z - axis.x * s, 0.0,
    oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c,          0.0,
    0.0,                               0.0,                               0.0,                               1.0
  );
}

vec3 rotate(vec3 v, vec3 axis, float angle) {
  mat4 m = rotationMatrix(axis, angle);
  return (m * vec4(v, 1.0)).xyz;
}

vec2 rotate(vec2 v, float angle) {
  float co = cos(angle), si = sin(angle);
  return v * mat2(co, -si, si, co);
}

float disturbRadius(float radius, vec3 axis) {
  float mul = 4.0; float mag = 9.0;
  float minRes = min(resolution.x, resolution.y);
  vec2 fc = gl_FragCoord.xy / minRes;
  float waveTime = time * 2.0;
  vec2 distortOffset = vec2(
    sin(waveTime + fc.y * TAU),
    sin(waveTime + fc.x * TAU)
  ) * vec2(0.5);
  axis.xy += distortOffset;
  axis.yz += distortOffset * -0.5;
  float disturbed = (
    radius * 1.0 +
    0.03 * sin((mul - 1.0) * time + axis.x * (mag)) +
    0.04 * sin((mul - 2.0) * time + axis.y * (mag - 1.0)) +
    0.05 * sin((mul - 3.0) * time + axis.z * (mag - 2.0))
  );
  return disturbed;
}

float sphereSDF(vec3 p, float radius) {
  radius = disturbRadius(radius, p);
  return length(p) - radius;
}

float mapDistance(vec3 p) {
  vec3 spherePos = vec3(0.0, 1.75, 0.0);
  float sphereRadius = 1.0;
  float sphereDist = sphereSDF(p - spherePos, sphereRadius);
  float groundDist = p.y;
  float dist = min(sphereDist, groundDist);
  return dist;
}

float rayMarch(vec3 ro, vec3 rd) {
  float dist = 0.0;
  for (int i = 0; i < marchSteps; i++) {
    vec3 p = ro + rd * dist;
    float sceneDist = mapDistance(p);
    dist += sceneDist;
    if (dist > 300.0 || sceneDist <= 0.01) { break; }
  }
  return dist;
}

vec3 getNormal(vec3 p) {
  float dist = mapDistance(p);
  vec2 closeSample = vec2(0.01, 0.0);
  vec3 closeSampleV3 = vec3(
    mapDistance(p - closeSample.xyy),
    mapDistance(p - closeSample.yxy),
    mapDistance(p - closeSample.yyx)
  );
  vec3 normal = dist - closeSampleV3;
  return normalize(normal);
}

float getAmbientOcclusion(vec3 pos, vec3 nor) {
  float occ = 0.0;
  float sca = 1.0;
  for (int i = 0; i < 5; i++) {
    float h = 0.001 + 0.25 * float(i) / 4.0;
    float d = mapDistance(pos + h * nor);
    occ += (h - d) * sca;
    sca *= 0.98;
  }
  return clamp(1.0 - 1.6 * occ, 0.0, 1.0);
}

float getSoftShadow(vec3 ro, vec3 rd, float tmin, float tmax) {
  float res = 1.0;
  float t = tmin;
  float ph = 1e10;
  for (int i = 0; i < 32; i++) {
    float h = mapDistance(ro + rd * t);
    res = min(res, 10.0 * h / t);
    t += h;
    if (res < tmin || t > tmax) { break; }
  }
  return clamp(res, 0.0, 1.0);
}

vec3 getCameraPosition(void) {
  float acc = 0.0;
  const float camHeight = 3.5;
  const float camDistanceRadius = 6.0;
  float camPosX = sin(mouselerp.x * PI) * camDistanceRadius;
  float camPosY = camHeight;
  float camPosZ = cos(mouselerp.x * PI) * camDistanceRadius;
  vec3 ro = vec3(camPosX, camPosY, camPosZ);
  return ro;
}

mat3 calcLookAtMatrix(vec3 origin, vec3 target, float roll) {
  vec3 rr = vec3(sin(roll), cos(roll), 0.0);
  vec3 ww = normalize(target - origin);
  vec3 uu = normalize(cross(ww, rr));
  vec3 vv = normalize(cross(uu, ww));
  return mat3(uu, vv, ww);
}

vec3 getCameraTarget(vec2 uv, vec3 ro) {
  vec3 camTarget = vec3(0.0, 1.5, 0.0);
  float camRoll = 0.0; float fov = 1.25;
  mat3 camMatrix = calcLookAtMatrix(ro, camTarget, camRoll);
  vec3 rd = normalize(camMatrix * vec3(uv.x, uv.y, fov));
  return rd;
}

vec4 render(vec2 uv) {
  float ambient = 0.2;
  float spec = 0.2;
  vec3 col = vec3(0.0);
  vec3 material = vec3(0.2, 0.5, 1.0);

  vec3 ro = getCameraPosition();
  vec3 rd = getCameraTarget(uv, ro);

  float dist = rayMarch(ro, rd);

  vec3 p = ro + rd * dist;
  vec3 normal = getNormal(p);

  vec3 light = normalize(vec3(2.5, 2.5, 1.0));
  float l = clamp(dot(light, normal), 0.0, 1.0);
  vec3 ref = normalize(reflect(rd, -normal));
  float r = clamp(dot(ref, light), 0.0, 1.0);
  float occlusion = getAmbientOcclusion(p, normal);
  float shadow = getSoftShadow(p, light, 0.1, 5.0);

  col = (
    min(vec3(max(shadow, ambient)), max(l, ambient)) *
    max(occlusion, ambient) * material + pow(abs(r), 64.0) * spec +
    normal * 0.02
  );

  return vec4(col, 1.0);
}

vec4 superSample(vec2 uv, float res, int steps, float offset) {
  vec4 rv = vec4(0.0);
  vec2 stepSize = vec2(offset) / res / float(steps);
  uv -= vec2(0.5) / res;
  for (int x = 0; x < steps; ++x) {
    for (int y = 0; y < steps; ++y) {
      vec2 off = vec2(float(x), float(y)) + vec2(0.5);
      rv += render(uv + off * stepSize);
    }
  }
  return rv / float(steps * steps);
}

float gaussian(float z, float u, float o) {
  return (
    (1.0 / (o * sqrt(TAU))) *
    (exp(-(((z - u) * (z - u)) / (2.0 * (o * o)))))
  );
}

vec3 gaussGrain(float t) {
  vec2 ps = vec2(1.0) / resolution.xy;
  vec2 uv = gl_FragCoord.xy * ps;
  float seed = dot(uv, vec2(12.9898, 78.233));
  float noise = fract(sin(seed) * 43758.5453123 + t);
  noise = gaussian(noise, 0.0, 0.5);
  return vec3(noise);
}

void main(void) {
  vec2 uv = (gl_FragCoord.xy - resolution.xy * 0.5) / resolution.y;
  float minRes = min(resolution.x, resolution.y);
  vec4 color = superSample(uv, minRes, 2, 1.96);
  vec3 grain = gaussGrain(time) * 0.03;
  color.xyz -= grain;
  fragColor = color;
}