#version 300 es
// ╔═════════════╦════════════════╗
// ║ Marco Gomez ║ https://mgz.me ║
// ╚═════════════╩════════════════╝
precision highp float;
uniform sampler2D prgm4Texture;
uniform vec2 resolution;
uniform float time;
out vec4 fragColor;
void main(void) {
vec2 uv = gl_FragCoord.xy / resolution.xy;
vec4 tex = texture(prgm4Texture, uv);
fragColor = tex;
}
#version 300 es
// ╔═════════════╦════════════════╗
// ║ Marco Gomez ║ https://mgz.me ║
// ╚═════════════╩════════════════╝
precision highp float;
uniform vec2 resolution;
uniform vec2 mouselerp;
uniform float time;
out vec4 fragColor;
#define marchSteps 40
const float PI = acos(-1.0);
const float TAU = PI * 2.0;
const float cos30 = sqrt(3.0) / 2.0; // for triPrismSDF
mat4 rotationMatrix(vec3 axis, float angle) {
axis = normalize(axis);
float s = sin(angle);
float c = cos(angle);
float oc = 1.0 - c;
return mat4(
oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0,
oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0,
oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0,
0.0, 0.0, 0.0, 1.0
);
}
vec3 rotate(vec3 v, vec3 axis, float angle) {
mat4 m = rotationMatrix(axis, angle);
return (m * vec4(v, 1.0)).xyz;
}
vec2 rotate(vec2 v, float angle) {
float co = cos(angle), si = sin(angle);
return v * mat2(co, -si, si, co);
}
float gaussian(float z, float u, float o) {
return (
(1.0 / (o * sqrt(TAU))) *
(exp(-(((z - u) * (z - u)) / (2.0 * (o * o)))))
);
}
vec3 gaussGrain(float t) {
vec2 ps = vec2(1.0) / resolution.xy;
vec2 uv = gl_FragCoord.xy * ps;
float seed = dot(uv, vec2(12.9898, 78.233));
float noise = fract(sin(seed) * 43758.5453123 + t);
noise = gaussian(noise, 0.0, 0.5);
return vec3(noise);
}
float disturbRadius(float radius, vec3 axis) {
float mul = 2.0; float mag = 3.0;
float minRes = min(resolution.x, resolution.y);
vec2 fc = gl_FragCoord.xy / minRes;
float waveTime = time * 2.0;
vec2 distortOffset = vec2(
sin(waveTime + fc.y * TAU),
sin(waveTime + fc.x * TAU)
) * vec2(0.5);
axis.xy += distortOffset;
axis.yz += distortOffset * -0.5;
float disturbed = (
radius * 1.0 +
0.005 * sin((mul - 1.0) * time + axis.x * (mag)) +
0.010 * sin((mul - 2.0) * time + axis.y * (mag - 1.0)) +
0.015 * sin((mul - 3.0) * time + axis.z * (mag - 2.0))
);
return disturbed;
}
float sphereSDF(vec3 p, float radius) {
radius = disturbRadius(radius, p);
p *= vec3(0.92, 0.97, 0.99);
return length(p) - radius;
}
float triPrismSDF(vec3 p, vec3 h) {
vec3 q = abs(p);
return max(q.y - h.y, max(q.z * cos30 + p.x * h.z, -p.x) - h.x * 0.5);
}
float un(float a, float b) {
return min(a, b);
}
float sub(float a, float b) {
return max(a, -b);
}
float subRound(float a, float b, float r) {
vec2 u = max(vec2(r + a, r - b), vec2(0.0));
return min(-r, max(a, -b)) + length(u);
}
float mapDistance(vec3 p, inout float inner) {
#define c(A) cos(A)
#define s(A) sin(A)
float tA = 0.5 * PI;
float tB = PI * 0.5;
float tC = -0.5 * PI;
mat3 rXA = mat3(vec3(+c(tA), s(tA), 0.0), vec3(-s(tA), c(tA), 0.0), vec3(0.0, 0.0, 1.0));
mat3 rXB = mat3(vec3(+c(tC), s(tC), 0.0), vec3(-s(tC), c(tC), 0.0), vec3(0.0, 0.0, 1.0));
mat3 rYA = mat3(vec3(1.0, 0.0, 0.0), vec3(0.0, +c(tB), s(tB)), vec3(0.0, -s(tB), c(tB)));
mat3 rotA = rXA * rYA;
mat3 rotB = rXB * rYA;
float disturb = atan(p.x, p.z);
float disturbSin = sin(disturb * 9.0);
disturbSin = 1.0 - (abs(disturbSin));
vec3 spherePos = vec3(0.0, 1.75, 0.0);
float sphereRadius = 1.0;
float sphereDist = sphereSDF(p - spherePos, sphereRadius);
float sphereCarve = sphereSDF(p - spherePos, sphereRadius - 0.1);
sphereDist = sub(sphereDist, sphereCarve);
sphereDist = sphereDist + disturbSin * 0.021;
float zOff = -0.7;
float eDepth = 0.35;
float e = triPrismSDF((p + vec3(+0.350, -2.250, zOff)) * rotA, vec3(0.22, eDepth, 0.5));
float e2 = triPrismSDF((p + vec3(-0.350, -2.250, zOff)) * rotA, vec3(0.22, eDepth, 0.5));
float e3 = triPrismSDF((p + vec3(+0.000, -2.000, zOff)) * rotA, vec3(0.15, eDepth, 0.5));
float e4 = triPrismSDF((p + vec3(-0.100, -1.700, zOff)) * rotA, vec3(0.16, eDepth, 0.5));
float e5 = triPrismSDF((p + vec3(+0.100, -1.700, zOff)) * rotA, vec3(0.16, eDepth, 0.5));
float e6 = triPrismSDF((p + vec3(+0.270, -1.750, zOff)) * rotA, vec3(0.16, eDepth, 0.6));
float e7 = triPrismSDF((p + vec3(-0.270, -1.750, zOff)) * rotA, vec3(0.16, eDepth, 0.6));
float e8 = triPrismSDF((p + vec3(+0.420, -1.800, zOff)) * rotA, vec3(0.16, eDepth, 0.4));
float e9 = triPrismSDF((p + vec3(-0.420, -1.800, zOff)) * rotA, vec3(0.16, eDepth, 0.4));
float e10 = triPrismSDF((p + vec3(+0.000, -1.570, zOff)) * rotB, vec3(0.18, eDepth, 0.7));
float e11 = triPrismSDF((p + vec3(-0.210, -1.610, zOff)) * rotB, vec3(0.17, eDepth, 0.5));
float e12 = triPrismSDF((p + vec3(+0.210, -1.610, zOff)) * rotB, vec3(0.17, eDepth, 0.5));
float e13 = triPrismSDF((p + vec3(+0.405, -1.655, zOff)) * rotB, vec3(0.17, eDepth, 0.5));
float e14 = triPrismSDF((p + vec3(-0.405, -1.655, zOff)) * rotB, vec3(0.17, eDepth, 0.5));
e = un(e, e2); e = un(e, e3);
e = un(e, e4); e = un(e, e5); e = un(e, e6); e = un(e, e7); e = un(e, e8); e = un(e, e9);
e = un(e, e10); e = un(e, e11); e = un(e, e12); e = un(e, e13); e = un(e, e14);
sphereDist = sub(sphereDist, e);
float groundDist = p.y + 2.2 - disturbRadius(0.5, p * 0.75) * 5.0;
float dist = min(sphereDist, groundDist);
inner = sphereSDF(p - spherePos, sphereRadius - 0.05);
return dist;
}
float rayMarch(vec3 ro, vec3 rd, inout float inner) {
float dist = 0.0;
float innerDist;
for (int i = 0; i < marchSteps; i++) {
float inn;
vec3 p = ro + rd * dist;
float sceneDist = mapDistance(p, inn);
innerDist += inn;
dist += sceneDist;
if (dist > 10.0 || sceneDist <= 0.003) { break; }
}
inner = innerDist;
return dist;
}
vec3 getNormal(vec3 p) {
float inner;
float dist = mapDistance(p, inner);
vec2 closeSample = vec2(0.01, 0.0);
vec3 closeSampleV3 = vec3(
mapDistance(p - closeSample.xyy, inner),
mapDistance(p - closeSample.yxy, inner),
mapDistance(p - closeSample.yyx, inner)
);
vec3 normal = dist - closeSampleV3;
return normalize(normal);
}
float getAmbientOcclusion(vec3 pos, vec3 nor) {
float occ = 0.0;
float sca = 1.0;
float inner;
for (int i = 0; i < 4; i++) {
float h = 0.001 + 0.25 * float(i) / 4.0;
float d = mapDistance(pos + h * nor, inner);
occ += (h - d) * sca;
sca *= 0.98;
}
return clamp(1.0 - 1.6 * occ, 0.0, 1.0);
}
float getSoftShadow(vec3 ro, vec3 rd, float tmin, float tmax) {
float res = 1.0;
float t = tmin;
float ph = 1e10;
float inner;
for (int i = 0; i < 15; i++) {
float h = mapDistance(ro + rd * t, inner);
res = min(res, 10.0 * h / t);
t += h;
if (res < tmin || t > tmax) { break; }
}
return clamp(res, 0.0, 1.0);
}
vec3 getCameraPosition(void) {
float acc = 0.0;
const float camHeight = 3.0;
const float camDistanceRadius = 3.5;
float camPosX = sin(mouselerp.x * PI) * camDistanceRadius;
float camPosY = camHeight;
float camPosZ = cos(mouselerp.x * PI) * camDistanceRadius;
vec3 ro = vec3(camPosX, camPosY, camPosZ);
return ro;
}
mat3 calcLookAtMatrix(vec3 origin, vec3 target, float roll) {
vec3 rr = vec3(sin(roll), cos(roll), 0.0);
vec3 ww = normalize(target - origin);
vec3 uu = normalize(cross(ww, rr));
vec3 vv = normalize(cross(uu, ww));
return mat3(uu, vv, ww);
}
vec3 getCameraTarget(vec2 uv, vec3 ro) {
vec3 camTarget = vec3(0.0, 1.5, 0.0);
float camRoll = 0.0; float fov = 1.0;
mat3 camMatrix = calcLookAtMatrix(ro, camTarget, camRoll);
vec3 rd = normalize(camMatrix * vec3(uv.x, uv.y, fov));
return rd;
}
vec4 render(vec2 uv) {
float ambient = 0.15;
float spec = 0.3;
vec3 col = vec3(0.0);
vec3 material = vec3(1.0, 0.5, 0.2) * 0.6;
vec3 ro = getCameraPosition();
vec3 rd = getCameraTarget(uv, ro);
float innerDist;
float dist = rayMarch(ro, rd, innerDist);
vec3 p = ro + rd * dist;
vec3 ip = ro + rd * innerDist;
vec3 normal = getNormal(p);
vec3 light = normalize(vec3(2.5, 2.5, 3.0));
float l = clamp(dot(light, normal), 0.0, 1.0);
vec3 ref = normalize(reflect(rd, -normal));
float r = clamp(dot(ref, light), 0.0, 1.0);
float occlusion = getAmbientOcclusion(p, normal);
float shadow = getSoftShadow(p, light, 0.2, 5.0);
vec3 vShadow = vec3(max(shadow, ambient));
l = max(l, ambient);
occlusion = max(occlusion, ambient);
col += min(vShadow, l) * occlusion * material + pow(abs(r), 64.0) * spec;
if (dist > 9.0) discard;
if (p.y < 0.6) { col.bg *= 0.1; col *= 1.5; }
col = mix(col, col * vec3(p.y), 0.6);
vec3 ic = clamp((abs(ip) - innerDist), 0.0, 1.0) * 3.0;
col += clamp((ic.x + ic.y + ic.z) / 3.0, 0.0, 1.0) * vec3(1.0, 0.9, 0.5);
return vec4(col, 1.0);
}
void main(void) {
vec2 uv = (gl_FragCoord.xy - resolution.xy * 0.5) / resolution.y;
vec4 color = render(uv);
vec3 grain = gaussGrain(time) * 0.03;
color.xyz -= grain;
fragColor = color;
}
#version 300 es
// ╔═════════════╦════════════════╗
// ║ Marco Gomez ║ https://mgz.me ║
// ╚═════════════╩════════════════╝
precision highp float;
uniform sampler2D prgm1Texture;
uniform vec2 resolution;
uniform float time;
uniform int frame;
out vec4 fragColor;
vec3 hash33(vec3 p3) {
p3 = fract(p3 * vec3(0.1031, 0.1030, 0.0973));
p3 += dot(p3, p3.yxz + 19.19);
return fract((p3.xxy + p3.yxx) * p3.zyx);
}
void main(void) {
vec2 uv = gl_FragCoord.xy / resolution.xy;
vec4 col = vec4(0.0);
float w = 0.1;
vec2 a = vec2(uv.x - 0.5, uv.y - 0.66);
vec2 b = a * 0.15 / float(10.0);
vec3 h = hash33(vec3(gl_FragCoord.xy, frame));
uv += b * h.x * 0.1;
for (float i = 1.0; i > 0.985; i-= 0.0005) {
uv -= 0.5;
uv *= i;
uv += 0.5;
vec4 tex = texture(prgm1Texture, uv) * w * 1.2;
if ((tex.r + tex.g) / 2.5 > tex.b) col += tex * 0.6;
w *= 0.95;
}
col *= 0.95;
fragColor = clamp(col, 0.0, 1.0);
}
#version 300 es
// ╔═════════════╦════════════════╗
// ║ Marco Gomez ║ https://mgz.me ║
// ╚═════════════╩════════════════╝
precision highp float;
#define inputTexture prgm2Texture
uniform sampler2D prgm1Texture;
uniform sampler2D prgm2Texture;
uniform vec2 resolution;
uniform float time;
uniform float fft;
out vec4 fragColor;
const float amount = 1.0;
const float reinhardAmount = 1.0;
const float contrast = 0.9;
const float brightness = 1.7;
const float saturation = 0.6;
const vec2 vignetteSize = vec2(0.25, 0.25);
const float vignetteRoundness = 0.5;
const float vignetteMix = 0.7;
const float vignetteSmoothness = 0.42;
const float W = 1.2;
const float T = 7.5;
float filmicReinhardCurve(float x) {
float q = (T * T + 1.0) * x * x;
return q / (q + x + T * T);
}
vec3 filmicReinhard(vec3 c) {
float w = filmicReinhardCurve(W);
return vec3(
filmicReinhardCurve(c.r),
filmicReinhardCurve(c.g),
filmicReinhardCurve(c.b)
) / w;
}
vec3 contrastSaturationBrightness(vec3 color, float brt, float sat, float con) {
const float AvgLumR = 0.5;
const float AvgLumG = 0.5;
const float AvgLumB = 0.5;
const vec3 LumCoeff = vec3(0.2125, 0.7154, 0.0721);
vec3 AvgLumin = vec3(AvgLumR, AvgLumG, AvgLumB);
vec3 brtColor = color * brt;
vec3 intensity = vec3(dot(brtColor, LumCoeff));
vec3 satColor = mix(intensity, brtColor, sat);
vec3 conColor = mix(AvgLumin, satColor, con);
return conColor;
}
float sdSquare(vec2 point, float width) {
vec2 d = abs(point) - width;
return min(max(d.x, d.y), 0.0) + length(max(d, 0.0));
}
float vignette(vec2 uv, vec2 size, float roundness, float smoothness) {
uv -= 0.5;
float minWidth = min(size.x, size.y);
uv.x = sign(uv.x) * clamp(abs(uv.x) - abs(minWidth - size.x), 0.0, 1.0);
uv.y = sign(uv.y) * clamp(abs(uv.y) - abs(minWidth - size.y), 0.0, 1.0);
float boxSize = minWidth * (1.0 - roundness);
float dist = sdSquare(uv, boxSize) - (minWidth * roundness);
return 1.0 - smoothstep(0.0, smoothness, dist);
}
void main(void) {
vec2 uv = gl_FragCoord.xy / resolution.xy;
vec4 tex = texture(inputTexture, uv);
vec3 reinhard = filmicReinhard(tex.rgb);
vec3 color = tex.rgb;
color = mix(color, reinhard, reinhardAmount);
color = contrastSaturationBrightness(color, brightness, saturation, contrast);
float v = vignette(uv, vignetteSize, vignetteRoundness, vignetteSmoothness);
vec3 vig = color * v;
color = mix(color, vig, vignetteMix);
color = mix(tex.xyz, color, amount);
color = clamp(color, 0.0, 1.0);
color = clamp(mix(texture(prgm1Texture, uv).rgb, color, 0.7), 0.0, 1.0);
fragColor = vec4(color, 1.0);
}
#version 300 es
// ╔═════════════╦════════════════╗
// ║ Marco Gomez ║ https://mgz.me ║
// ╚═════════════╩════════════════╝
precision highp float;
#define inputTexture prgm3Texture
uniform sampler2D prgm3Texture;
uniform vec2 resolution;
uniform float time;
out vec4 fragColor;
const float PI = acos(-1.0);
const float TAU = PI * 2.0;
const float hardscan = -8.0;
const float hardPix = -2.0;
const float maskDark = 0.5;
const float maskLight = 1.5;
float toLinear(float c) {
return (c <= 0.04045) ? c / 12.92 : pow(abs((c + 0.055) / 1.055), 2.4);
}
vec3 toLinear(vec3 c) {
return vec3(toLinear(c.r), toLinear(c.g), toLinear(c.b));
}
float toSRGB(float c) {
return(c < 0.0031308 ? c * 12.92 : 1.055 * pow(abs(c), 0.41666) - 0.055);
}
vec3 toSRGB(vec3 c) {
return vec3(toSRGB(c.r), toSRGB(c.g), toSRGB(c.b));
}
vec3 fetch(vec2 pos, vec2 off, vec2 res) {
pos = floor(pos * res + off) / res;
if (max(abs(pos.x - 0.5), abs(pos.y - 0.5)) > 0.5) {
return vec3(0.0);
}
return toLinear(texture(inputTexture, pos.xy, -16.0).xyz);
}
vec2 dist(vec2 pos, vec2 res) {
pos = pos * res;
return -((pos - floor(pos)) - vec2(0.5));
}
float gauss(float pos, float scale) {
return exp2(scale * pos * pos);
}
vec3 horz3(vec2 pos, float off, vec2 res) {
vec3 b = fetch(pos, vec2(-1.0, off), res);
vec3 c = fetch(pos, vec2(+0.0, off), res);
vec3 d = fetch(pos, vec2(+1.0, off), res);
float dst = dist(pos, res).x;
float scale = hardPix;
float wb = gauss(dst - 1.0, scale);
float wc = gauss(dst + 0.0, scale);
float wd = gauss(dst + 1.0, scale);
return (b * wb + c * wc + d * wd) / (wb + wc + wd);
}
vec3 horz5(vec2 pos, float off, vec2 res) {
vec3 a = fetch(pos, vec2(-2.0, off), res);
vec3 b = fetch(pos, vec2(-1.0, off), res);
vec3 c = fetch(pos, vec2(+0.0, off), res);
vec3 d = fetch(pos, vec2(+1.0, off), res);
vec3 e = fetch(pos, vec2(+2.0, off), res);
float dst = dist(pos, res).x;
float scale = hardPix;
float wa = gauss(dst - 2.0, scale);
float wb = gauss(dst - 1.0, scale);
float wc = gauss(dst + 0.0, scale);
float wd = gauss(dst + 1.0, scale);
float we = gauss(dst + 2.0, scale);
return (a * wa + b * wb + c * wc + d * wd + e * we) / (wa + wb + wc + wd + we);
}
float scan(vec2 pos, float off, vec2 res) {
float dst = dist(pos, res).y;
return gauss(dst + off, hardscan);
}
vec3 tri(vec2 pos, vec2 res) {
vec3 a = horz3(pos, -1.0, res);
vec3 b = horz5(pos, +0.0, res);
vec3 c = horz3(pos, +1.0, res);
float wa = scan(pos, -1.0, res);
float wb = scan(pos, +0.0, res);
float wc = scan(pos, +1.0, res);
return a * wa + b * wb + c * wc;
}
vec3 mask(vec2 pos) {
pos.x += pos.y * 3.0;
vec3 m = vec3(maskDark, maskDark, maskDark);
pos.x = fract(pos.x / 6.0);
if (pos.x < 0.333) {
m.r = maskLight;
} else if (pos.x < 0.666) {
m.g = maskLight;
} else {
m.b = maskLight;
}
return m;
}
float bar(float pos, float bar) {
pos -= bar;
return pos * pos < 4.0 ? 0.0 : 1.0;
}
float rand(vec2 uv, float t) {
float seed = dot(uv, vec2(12.9898, 78.233));
return fract(sin(seed) * 43758.5453123 + t);
}
float gaussian(float z, float u, float o) {
return (
(1.0 / (o * sqrt(TAU))) *
(exp(-(((z - u) * (z - u)) / (2.0 * (o * o)))))
);
}
vec3 gaussgrain(float t) {
vec2 ps = vec2(1.0) / resolution.xy;
vec2 uv = gl_FragCoord.xy * ps;
float noise = rand(uv, t);
noise = gaussian(noise, 0.0, 0.5);
return vec3(noise);
}
void drawVig(inout vec3 color, vec2 uv) {
float vignette = uv.x * uv.y * (1.0 - uv.x) * (1.0 - uv.y);
vignette = clamp(pow(abs(16.0 * vignette), 0.1), 0.0, 1.0);
color = mix(color, color * vignette, 0.7);
}
void main(void) {
vec2 res = vec2(800.0, 600.0);
vec2 uv = gl_FragCoord.xy / resolution.xy;
float vig = (0.0 + 1.0 * 21.0 * uv.x * uv.y * (1.0 - uv.x) * (1.0 - uv.y));
float v = exp(-0.01 * length(uv)) * vig;
float frameScale = 29.97;
float frameTime = floor(time * frameScale) / frameScale;
vec3 g = gaussgrain(frameTime) * 0.07;
vec4 color = vec4(tri(uv, res) * mask(gl_FragCoord.xy), 1.0);
color.xyz = toSRGB(color.xyz * 2.0) - g;
color = mix(color, color * v, 0.7);
drawVig(color.xyz, uv);
fragColor = color;
}